cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108643 Number of binary rooted trees with n nodes and internal path length n.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 4, 0, 4, 2, 8, 6, 8, 8, 8, 40, 4, 29, 40, 52, 56, 64, 116, 112, 200, 86, 296, 366, 360, 432, 652, 800, 840, 1470, 1116, 2048, 2356, 3052, 3524, 4220, 5648, 6964, 9660, 8688, 14128, 17024, 19432, 23972, 32784, 37873, 44912, 59672, 67560, 93684
Offset: 0

Views

Author

N. J. A. Sloane and Nadia Heninger, Jul 08 2005

Keywords

Comments

Self-convolution equals A095830 (number of binary trees of path length n). - Paul D. Hanna, Aug 20 2007

References

  • Knuth Vol. 1 Sec. 2.3.4.5, Problem 5.

Programs

  • Maple
    A:= proc(n,k) option remember; if n=0 then 1 else convert(series(1+ x^k*A(n-1, k+1)^2, x,n+1), polynom) fi end: a:= n-> coeff(A(n,1), x,n): seq(a(n), n=0..60);  # Alois P. Heinz, Aug 22 2008
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, 1+x^k*A[n-1, k+1]^2 + O[x]^(n+1) // Normal]; a[n_] := SeriesCoefficient[A[n, 1], {x, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 14 2017, after Alois P. Heinz *)
  • PARI
    {a(n)=local(A=1+x*O(x^n)); for(j=0,n-1,A=1+x^(n-j)*A^2);polcoeff(A,n)} \\ Paul D. Hanna, Aug 20 2007

Formula

G.f. = B(w, w) where B(w, z) is defined in A095830.
G.f.: A(x) = 1 + x*(A_2)^2; A_2 = 1 + x^2*(A_3)^2; A_3 = 1 + x^3*(A_4)^2; ... A_n = 1 + x^n*(A_{n+1})^2 for n>=1 with A_1 = A(x). - Paul D. Hanna, Aug 20 2007

Extensions

More terms from Vladeta Jovovic, Jul 08 2005