cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108765 Expansion of g.f. (1 - x + x^2)/((1-3*x)*(x-1)^2).

Original entry on oeis.org

1, 4, 14, 45, 139, 422, 1272, 3823, 11477, 34440, 103330, 310001, 930015, 2790058, 8370188, 25110579, 75331753, 225995276, 677985846, 2033957557, 6101872691, 18305618094, 54916854304, 164750562935, 494251688829, 1482755066512
Offset: 0

Views

Author

Creighton Dement, Jun 24 2005

Keywords

Comments

Superseeker suggests a(n+2) - 2*a(n+1) + a(n) = 7*3^n = A005032(n).
Inverse binomial transform gives match with first differences of A026622.
Floretion Algebra Multiplication Program, FAMP Code: kbasefor[(- 'j + 'k - 'ii' - 'ij' - 'ik')], vesfor = A000004, Fortype: 1A, Roktype (leftfactor) is set to:Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code)

Crossrefs

Programs

  • Mathematica
    s=1;lst={s};Do[s+=(s+(n+=s));AppendTo[lst, s], {n, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 11 2008 *)
    CoefficientList[Series[(1-x+x^2)/((1-3x)(x-1)^2),{x,0,40}],x] (* or *) LinearRecurrence[{5,-7,3},{1,4,14},40] (* Harvey P. Dale, Dec 11 2012 *)

Formula

From Rolf Pleisch, Feb 10 2008: (Start)
a(0) = 1; a(n) = 3*a(n-1) + n.
a(n) = (7*3^n - 2*n - 3)/4. (End)
a(0)=1, a(1)=4, a(2)=14, a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - Harvey P. Dale, Dec 11 2012