A108775 a(n) = floor(sigma(n)/n).
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1
Offset: 1
Keywords
Examples
a(6) = 2 because sigma(6)/6 = (1 + 2 + 3 + 6)/6 = 2.
References
- W. Sierpinski, Elementary Theory of Numbers, 1987, p. 174 ff.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a108775 n = div (a000203 n) n -- Reinhard Zumkeller, Mar 23 2013
-
Mathematica
Table[ Floor[ DivisorSigma[1, n]/n], {n, 105}] (* Robert G. Wilson v, Jun 28 2005 *)
-
PARI
a(n) = sigma(n)\n; \\ Michel Marcus, Sep 18 2015
Formula
Extensions
More terms from Robert G. Wilson v, Jun 28 2005
Comments