cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A108805 A108804 read mod 4.

Original entry on oeis.org

0, 0, 1, 2, 1, 2, 2, 0, 3, 0, 2, 2, 0, 2, 3, 0, 3, 0, 2, 2, 2, 2, 1, 0, 2, 0, 3, 2, 1, 2, 2, 0, 3, 0, 2, 2, 2, 2, 1, 0, 0, 0, 1, 2, 3, 2, 0, 0, 2, 0, 3, 2, 3, 2, 0, 0, 3, 0, 2, 2, 0, 2, 3, 0, 3, 0, 2, 2, 2, 2, 1, 0, 0, 0, 1, 2, 3, 2, 0, 0, 0, 0, 1, 2, 1, 2, 2, 0, 1, 0, 0, 2
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2005

Keywords

A247303 Convolution of A010059(n) with itself.

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 3, 0, 2, 4, 3, 2, 5, 2, 2, 8, 2, 4, 7, 2, 7, 6, 4, 8, 7, 4, 6, 10, 4, 10, 11, 0, 10, 12, 7, 10, 11, 6, 8, 16, 9, 8, 12, 10, 10, 14, 13, 8, 15, 12, 10, 18, 10, 14, 17, 8, 14, 20, 15, 10, 21, 10, 10, 32, 10, 12, 23, 10, 19, 22, 16, 16, 21, 16
Offset: 0

Views

Author

Tanya Khovanova, Sep 11 2014

Keywords

Comments

The parity of this sequence is A228495(n+1).
Alternatively, the number of ways to write n = x+y, where x, y are evil numbers (members of A001969). - Jeffrey Shallit, Jun 22 2021

Crossrefs

Programs

  • Haskell
    a247303 n = a247303_list !! n
    a247303_list = f [head a010059_list] $ tail a010059_list where
       f xs (z:zs) = (sum $ zipWith (*) xs (reverse xs)) : f (z : xs) zs
    -- Reinhard Zumkeller, Sep 14 2014
    
  • Mathematica
    a59[n_]:= Mod[SeriesCoefficient[(1+Sqrt[(1-3x)/(1+x)])/(2(1+x)), {x, 0, n}], 2];
    a[n_] := Sum[a59[k] a59[n-k], {k, 0, n}];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 15 2018 *)
    Table[Sum[(1-ThueMorse[k])*(1-ThueMorse[n - k]), {k, 0, n}], {n, 0, 80}] (* G. C. Greubel, Apr 03 2019 *)
  • PARI
    nh(n)=!(hammingweight(n)%2);
    a(n) = sum(k=0, n, nh(k)*nh(n-k)); \\ Michel Marcus, Sep 12 2014
    
  • PARI
    m0 = [1,0,0,0,0,0; 0,0,1,0,0,0; 0,0,0,0,1,0; -1,2,-2,1,0,1; -2,2,0,0,-1,2; -1,2,-3,0,1,2];
    m1 = [0,1,0,0,0,0; 0,0,0,1,0,0; 0,0,0,0,0,1; 0,1,-1,-2,1,2; -2,2,-2,2,0,1; -2,3,-2,-1,0,3];
    a(n)=my(t=[1,0,0,0,0,0]); forstep(i=exponent(n),0,-1, t*=if(bittest(n,i),m1,m0)); t*[1,0,0,2,0,2]~; \\ Following Shallit; for more efficiency, calculate by bytes instead of bits. Charles R Greathouse IV, Jun 23 2021
    
  • Sage
    [sum((1-sloane.A010060(k))*(1-sloane.A010060(n-k)) for k in (0..n)) for n in (0..80)] # G. C. Greubel, Apr 03 2019

Formula

G.f.: (1/4)*(1/(1 - x) + Product_{k>=0} (1 - x^(2^k)))^2. - Ilya Gutkovskiy, Apr 03 2019
a(n) = Sum_{k=0..n} (1-A010060(k))*(1-A010060(n-k)), for n>=0. - G. C. Greubel, Apr 03 2019
From Jeffrey Shallit, Jun 22 2021: (Start)
a(n) = v mu(x) w, where x is n expressed in base 2, and
v = [ 1, 0, 0, 0, 0, 0]
mu(0) = [[ 1, 0, 0, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 1, 0],
[-1, 2,-2, 1, 0, 1],
[-2, 2, 0, 0,-1, 2],
[-1, 2,-3, 0, 1, 2]]
mu(1) = [[ 0, 1, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0],
[ 0, 0, 0, 0, 0, 1],
[ 0, 1,-1,-2, 1, 2],
[-2, 2,-2, 2, 0, 1],
[-2, 3,-2,-1, 0, 3]]
w = [ 1, 0, 0, 2, 0, 2] (End)

Extensions

More terms from Michel Marcus, Sep 12 2014
Showing 1-2 of 2 results.