A108838 Triangle of Dyck paths counted by number of long interior inclines.
2, 3, 2, 4, 8, 2, 5, 20, 15, 2, 6, 40, 60, 24, 2, 7, 70, 175, 140, 35, 2, 8, 112, 420, 560, 280, 48, 2, 9, 168, 882, 1764, 1470, 504, 63, 2, 10, 240, 1680, 4704, 5880, 3360, 840, 80, 2, 11, 330, 2970, 11088, 19404, 16632, 6930, 1320, 99, 2
Offset: 2
Examples
Table begins \ k..0....1....2....3....4....5 n\ 2 |..2 3 |..3....2 4 |..4....8....2 5 |..5...20...15....2 6 |..6...40...60...24....2 7 |..7...70..175..140...35....2 The paths UUUDDD, UUDUDD, UDUDUD have no long interior inclines; so T(3,0)=3. From _Joerg Arndt_, Aug 18 2014: (Start) The rooted ordered trees with n=3 nodes, as (preorder-) level sequences, together with their number of leaves, and an ASCII rendering, are: : : 1: [ 0 1 1 1 ] 2 : O--o : .--o : .--o : : 2: [ 0 1 1 2 ] 2 : O--o : .--o--o : : 3: [ 0 1 2 1 ] 1 : O--o--o : .--o : : 4: [ 0 1 2 2 ] 1 : O--o--o : .--o : : 5: [ 0 1 2 3 ] 1 : O--o--o--o : This gives [3, 2], row n=3 of the triangle. (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 2..11176 (rows 2 <= n <= 150, flattened)
- Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
- Tewodros Amdeberhan, Victor H. Moll, and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana Polynomials, arXiv:1202.1203 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 19 2012
- Tewodros Amdeberhan, Victor H. Moll, and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana Polynomials, Online Journal of Analytic Combinatorics, Issue 8, 2013.
- David Callan, Some Identities for the Catalan and Fine Numbers, arXiv:math/0502532 [math.CO], 2005.
- M. Delest, J. P. Dubernard, and I. Dutour, Parallelogram polyominoes and corners, J. Symbolic Computation, 20(1995),503-515. [From _Emeric Deutsch_, Oct 09 2008]
- M. P. Delest, D. Gouyou-Beauchamps, and B. Vauquelin, Enumeration of parallelogram polyominoes with given bond and site parameter, Graphs and Combinatorics, 3 (1987), 325-339.
- Emeric Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
- T. Doslic, Handshakes across a (round) table, JIS 13 (2010) #10.2.7.
- Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, Counting pattern-avoiding permutations by big descents, arXiv:2408.15111 [math.CO], 2024. See pp. 6, 18, 27.
Crossrefs
Programs
-
Maple
T:=(n,k)->2*binomial(n-1,k)*binomial(n,k+2)/(n-1): for n from 2 to 11 do seq(T(n,k),k=0..n-2) od; # yields sequence in triangular form; Emeric Deutsch, Jul 23 2006
-
Mathematica
T[n_, 0] = n; T[n_, k_] := T[n, k] = If[k == n-2, 2, T[n, k-1](n-k-1)(n-k)/(k(k+2))]; Table[T[n, k], {n, 2, 11}, {k, 0, n-2}] // Flatten (* Jean-François Alcover, Jul 27 2018, after Werner Schulte *)
Formula
T(n, k) = 2*binomial(n+1, k+2)*binomial(n-2, k)/(n+1).
G.f.: G(z, t) = Sum_{n>=1, k>=0} T(n, k)*z^n*t^k satisfies z - ( (1-z)^2 - (2*t-t^2)*z^2 )*G + (t^2*z)*G^2 = 0.
G.f.: 1+z(1+r)^2, where r=r(t,z) is the Narayana function defined by (1+r)*(1+tr)z=r, r(t,0)=0. - Emeric Deutsch, Jul 23 2006
For n >= 0, the row polynomials Sum_{k=0..n} T(n+2,k)*x^k = (2/(n+1))*(1-x)^n*P(n,2,1,(1+x)/(1-x)), where P(n,a,b,x) denotes the Jacobi polynomial. It follows that the row polynomials have negative real zeros. - Peter Bala, Jan 21 2008
The trivariate g.f. G=G(t,s,z) of Dyck paths with respect to number of DUU's (marked by t), number of DDU's (marked by s) and semilength (marked by z) satisfies G = 1 + z*G + z^2*(1+t*(G-1))*(1+s*(G-1))/(1-z*(1+t*s*(G-1))) (the number of long interior inclines is equal to the number of DUU and DDU's). - Emeric Deutsch, Oct 09 2008
Recurrence: T(n, k) = T(n, k-1)*(n-1-k)*(n-k)/(k*(k+2)) for k > 0 and n >= 2. - Werner Schulte, Jan 04 2017
The array can be extended to negative values of n: T(-n,k) = 2*binomial(-n+1, k+2)*binomial(-n-2, k)/(-n+1) = -A145596(n+k,k+1) for n >= 2. - Peter Bala, Apr 26 2022
Comments