cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A108841 Palindromic primes in which all internal digits are 4.

Original entry on oeis.org

1444441, 3444443, 74444444447, 3444444444443, 7444444444444444444444444444447, 1444444444444444444444444444444444444444444444444444444444444444441
Offset: 1

Views

Author

Cino Hilliard, Jul 11 2005

Keywords

Comments

The next term has 121 digits. - Harvey P. Dale, Nov 26 2014
a(10) has 1255 digits, and thus is too big for a b-file. - Robert Israel, Oct 25 2018

Crossrefs

Similar sequences for digit d: A108845 (d=1), A108846 (d=2), A108842 (d=5), A108843 (d=6), A108844 (d=7), A108847 (d=8).

Programs

  • Maple
    select(isprime, [seq(seq(x*(10^d+1)+40*(10^(d-1)-1)/9,x=1..9,2),d=2..66)]); # Robert Israel, Oct 25 2018
  • Mathematica
    Sort[Select[FromDigits/@Flatten[Table[Join[{n},PadRight[{},i,4],{n}],{n,{1,3,7,9}},{i,150}],1],PrimeQ]] (* Harvey P. Dale, Nov 26 2014 *)
  • PARI
    n10np1(n,d) = { local(x,y,k); for(x=1,n, for(k=1,8, y=10^(x+1)*k+floor(10^x*d/9)*10+k; if(isprime(y),print1(y",")) ) ) }
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (t for i in count(1) for f in "1379" if isprime(t:=int(f + "4"*i + f)))
    print(list(islice(agen(), 9))) # Michael S. Branicky, Jan 27 2023

Extensions

Name changed by Arkadiusz Wesolowski, Sep 07 2011

A108842 Palindromic primes in which all internal digits are 5.

Original entry on oeis.org

151, 353, 757, 15551, 75557, 355555553, 75555555557, 155555555555555555551, 755555555555555555557, 75555555555555555555557, 155555555555555555555555555555551, 75555555555555555555555555555555555555555555555555555555557
Offset: 1

Views

Author

Cino Hilliard, Jul 11 2005

Keywords

Comments

The next term -- a(13) -- has 75 digits. - Harvey P. Dale, May 18 2015
a(25) has 1975 digits. - Michael S. Branicky, Jan 27 2023

Crossrefs

Similar sequences for digit d: A108845 (d=1), A108846 (d=2), A108841 (d=4), this sequence (d=5), A108843 (d=6), A108844 (d=7), A108847 (d=8).

Programs

  • Mathematica
    Select[Sort[Flatten[Table[FromDigits[Join[{n},PadRight[{},i,5],{n}]],{n,{1,3,7,9}},{i,80}]]],PrimeQ] (* Harvey P. Dale, May 18 2015 *)
  • PARI
    n10np1(n,d) = { local(x,y,k); for(x=1,n, for(k=1,8, y=10^(x+1)*k+floor(10^x*d/9)*10+k; if(isprime(y),print1(y",")) ) ) }
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (t for i in count(1) for f in "1379" if isprime(t:=int(f + "5"*i + f)))
    print(list(islice(agen(), 10))) # Michael S. Branicky, Jan 27 2023

Extensions

Name changed by Arkadiusz Wesolowski, Sep 07 2011
More terms from Harvey P. Dale, May 18 2015

A108843 Palindromic primes in which all internal digits are 6.

Original entry on oeis.org

16661, 76667, 7666667, 1666666666661, 16666666666666661, 1666666666666666661, 1666666666666666666666666666666666661, 16666666666666666666666666666666666666666666666666661
Offset: 1

Views

Author

Cino Hilliard, Jul 11 2005

Keywords

Comments

The external digits must either be ones or sevens. - Harvey P. Dale, Apr 06 2019
a(15) has 3385 digits. - Michael S. Branicky, Jan 27 2023

Crossrefs

Similar sequences for digit d: A108845 (d=1), A108846 (d=2), A108841 (d=4), A108842 (d=5), A108844 (d=7), A108847 (d=8), A108848 (d=9).

Programs

  • Mathematica
    nn=80;With[{o=Table[FromDigits[Join[PadRight[{1},n,6],{1}]],{n,3,nn}], s= Table[ FromDigits[Join[PadRight[{7},n,6],{7}]],{n,3,nn}]}, Select[ Sort[ Join[o,s]],PrimeQ]] (* Harvey P. Dale, May 26 2014 *)
  • PARI
    n10np1(n,d) = { local(x,y,k); for(x=1,n, for(k=1,8, y=10^(x+1)*k+floor(10^x*d/9)*10+k; if(isprime(y),print1(y",")) ) ) }
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (t for i in count(1) for f in "17" if isprime(t:=int(f + "6"*i + f)))
    print(list(islice(agen(), 10))) # Michael S. Branicky, Jan 27 2023

Extensions

Name changed by Arkadiusz Wesolowski, Sep 07 2011

A108845 Palindromic primes in which all internal digits are 1.

Original entry on oeis.org

313, 919, 3111111111113, 311111111111113, 1111111111111111111, 11111111111111111111111, 3111111111111111111111111111113
Offset: 1

Views

Author

Cino Hilliard, Jul 11 2005

Keywords

Comments

a(14) has 1031 digits. - Michael S. Branicky, Jan 27 2023

Crossrefs

Similar sequences for digit d: A108846 (d=2), A108841 (d=4), A108842 (d=5), A108843 (d=6), A108844 (d=7), A108847 (d=8), A108848 (d=9).

Programs

  • PARI
    n10np1(n,d) = { local(x,y,k); for(x=1,n, for(k=1,9, y=10^(x+1)*k+floor(10^x*d/9)*10+k; if(isprime(y),print1(y",")) ) ) }
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (t for i in count(1) for f in "1379" if isprime(t:=int(f + "1"*i + f)))
    print(list(islice(agen(), 10))) # Michael S. Branicky, Jan 27 2023

Extensions

Name changed by Arkadiusz Wesolowski, Sep 07 2011

A108846 Palindromic primes in which all internal digits are 2.

Original entry on oeis.org

727, 929, 72227, 3222223, 9222229, 322222223, 722222227, 9222222222229, 72222222222222222222222222227, 72222222222222222222222222222222222222222222222222222222222222227
Offset: 1

Views

Author

Cino Hilliard, Jul 11 2005

Keywords

Comments

a(14) has 1525 digits. - Michael S. Branicky, Jan 27 2023

Crossrefs

Similar sequences for digit d: A108845 (d=1), A108841 (d=4), A108842 (d=5), A108843 (d=6), A108844 (d=7), A108847 (d=8), A108848 (d=9).

Programs

  • Mathematica
    Select[Flatten[Table[10 FromDigits[PadRight[{d},n,2]]+d,{d,{1,3,7,9}},{n,2,70}]],PrimeQ]//Sort (* Harvey P. Dale, Feb 05 2023 *)
  • PARI
    n10np1(n,d) = { local(x,y,k); for(x=1,n, for(k=1,9, y=10^(x+1)*k+floor(10^x*d/9)*10+k; if(isprime(y),print1(y",")) ) ) }
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (t for i in count(1) for f in "1379" if isprime(t:=int(f + "2"*i + f)))
    print(list(islice(agen(), 10))) # Michael S. Branicky, Jan 27 2023

Extensions

Name changed by Arkadiusz Wesolowski, Sep 07 2011

A108847 Palindromic primes in which all internal digits are 8.

Original entry on oeis.org

181, 383, 787, 78887, 9888889, 188888881, 3888888888883, 188888888888881, 3888888888888888888888888888883, 18888888888888888888888888888888888888881
Offset: 1

Views

Author

Cino Hilliard, Jul 11 2005

Keywords

Comments

a(27) has 1065 digits. - Michael S. Branicky, Jan 27 2023

Crossrefs

Similar sequences for digit d: A108845 (d=1), A108846 (d=2), A108841 (d=4), A108842 (d=5), A108843 (d=6), A108844 (d=7), A108848 (d=9).

Programs

  • PARI
    n10np1(n,d) = { local(x,y,k); for(x=1,n, for(k=1,9, y=10^(x+1)*k+floor(10^x*d/9)*10+k; if(isprime(y),print1(y",")) ) ) }
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (t for i in count(1) for f in "1379" if isprime(t:=int(f + "8"*i + f)))
    print(list(islice(agen(), 10))) # Michael S. Branicky, Jan 27 2023

Extensions

Name changed by Arkadiusz Wesolowski, Sep 07 2011
One comment moved to A068689 by Michel Marcus, Jan 28 2023

A108848 Palindromic primes in which all internal digits are 9.

Original entry on oeis.org

191, 797, 19991, 79997, 199999991, 79999999999999999999999999997, 19999999999999999999999999999999999999991, 199999999999999999999999999999999999999999999999999999999999999999999999999999999999991
Offset: 1

Views

Author

Cino Hilliard, Jul 11 2005

Keywords

Comments

Obviously, 1 and 7 are the only possible outer digits for repeating inner digit 9.
Terms a(14), a(15), and a(16) have respectively 1213, 1285, and 1461 digits. - Harvey P. Dale, Dec 11 2019

Crossrefs

Similar sequences for digit d: A108845 (d=1), A108846 (d=2), A108841 (d=4), A108842 (d=5), A108843 (d=6), A108844 (d=7), A108847 (d=8), A108848 (d=9).

Programs

  • Mathematica
    Select[Flatten[Table[FromDigits[PadRight[{k},n,9]]*10+k,{n,2,200},{k,{1,7}}]],PrimeQ] (* Harvey P. Dale, Dec 11 2019 *)
  • PARI
    n10np9(n,d) = { local(x,y,k); for(x=1,n, for(k=1,9, y=10^(x+1)*k+(10^x-1)*10+k; if(isprime(y),print1(y",")) ) ) }
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): yield from (t for i in count(1) for f in "17" if isprime(t:=int(f + "9"*i + f)))
    print(list(islice(agen(), 13))) # Michael S. Branicky, Jan 27 2023

Extensions

Name changed by Arkadiusz Wesolowski, Sep 07 2011
More terms from Harvey P. Dale, Dec 11 2019

A298729 Prime numbers whose decimal expansion includes a substring of seven consecutive 7's.

Original entry on oeis.org

137777777, 177777773, 177777779, 197777777, 307777777, 347777777, 437777777, 527777777, 547777777, 577777777, 587777777, 647777777, 697777777, 777777701, 777777739, 777777743, 777777751, 777777799, 787777777, 827777777, 947777777, 967777777, 1247777777, 1277777771, 1277777773, 1457777777, 1487777777
Offset: 1

Views

Author

Yohei Furutono, Jan 25 2018

Keywords

Crossrefs

Programs

  • Mathematica
    s = {7, 7, 7, 7, 7, 7, 7}; lst = {}; k = 1; While[k < 10001, l = 1; il = 12;
    While[l < il, p = FromDigits@ Flatten@ Insert[ IntegerDigits[k, 10, 10], s, l];
      If[PrimeQ@ p, AppendTo[lst, p]]; l++]; k++]; Union@ lst (* Robert G. Wilson v, Feb 08 2018 *)
  • PARI
    is(n) = my(v=vector(7, x, 7), d=digits(n)); for(k=1, #d-6, if([d[k], d[k+1], d[k+2], d[k+3], d[k+4], d[k+5], d[k+6]]==v, return(1))); 0
    forprime(p=1, , if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Mar 06 2018
Showing 1-8 of 8 results.