A108852 Number of Fibonacci numbers <= n.
1, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 0
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.
Programs
-
Haskell
fibs :: [Integer] fibs = 0 : 1 : zipWith (+) fibs (tail fibs) fibs_to :: Integer -> Integer fibs_to n = length $ takeWhile (<= n) fibs
-
Maple
a:= proc(n) option remember; `if`(n<2, 2*n+1, a(n-1)+ (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2)) end: seq(a(n), n=0..100); # Alois P. Heinz, Nov 04 2024
-
Mathematica
fibPi[n_] := 1 + Floor[ Log[ GoldenRatio, 1 + n*Sqrt@ 5]]; Array[fibPi, 80, 0] (* Robert G. Wilson v, Aug 03 2014 *)
-
Python
def A108852(n): a, b, c = 0, 1, 0 while a <= n: a, b = b, a+b c += 1 return c # Chai Wah Wu, Nov 04 2024
Formula
G.f.: (Sum_{n>=0} x^Fibonacci(n))/(1-x). - Vladeta Jovovic, Nov 27 2005
a(n) = 1+floor(log_phi((sqrt(5)*n+sqrt(5*n^2+4))/2)), n>=0, where phi is the golden ratio. Alternatively, a(n) = 1+floor(arcsinh(sqrt(5)*n/2)/log(phi)). Also a(n) = A072649(n)+2. - Hieronymus Fischer, May 02 2007
a(n) = 1+floor(log_phi(sqrt(5)*n+1)), n>=0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
Comments