cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A072649 n occurs Fibonacci(n) times (cf. A000045).

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2002

Keywords

Comments

Number of digits in Zeckendorf-binary representation of n. E.g., the Zeckendorf representation of 12 is 8+3+1, which in binary notation is 10101, which consists of 5 digits. - Clark Kimberling, Jun 05 2004
First position where value n occurs is A000045(n+1), i.e., a(A000045(n)) = n-1, for n >= 2 and a(A000045(n)-1) = n-2, for n >= 3.
This is the number of distinct Fibonacci numbers greater than 0 which are less than or equal to n. - Robert G. Wilson v, Dec 10 2006
The smallest nondecreasing sequence a(n) such that a(Fibonacci(n-1)) = n. - Tanya Khovanova, Jun 20 2007

Examples

			1, 1, then F(2) 2's, then F(3) 3's, then F(4) 4's, ..., then F(k) k's, ...
		

Crossrefs

Cf. A001622 (golden ratio phi), A073010.
Used to construct A003714. Cf. also A002024, A072643, A072648, A072650.
Cf. A131234.
Partial sums: A256966, A256967.

Programs

  • Haskell
    a072649 n = a072649_list !! (n-1)
    a072649_list = f 1 where
       f n = (replicate (fromInteger $ a000045 n) n) ++ f (n+1)
    -- Reinhard Zumkeller, Jul 04 2011
    
  • Maple
    A072649 := proc(n)
        local j;
        for j from ilog[(1+sqrt(5))/2](n) while combinat[fibonacci](j+1)<=n do
        end do;
        j-1
    end proc:
    seq(A072649(n), n=1..120);  # Alois P. Heinz, Mar 18 2013
  • Mathematica
    Table[Table[n, {Fibonacci[n]}], {n, 10}] // Flatten (* Robert G. Wilson v, Jan 14 2007 *)
    a[n_] := Module[{j}, For[j = Floor@Log[GoldenRatio, n], Fibonacci[j+1] <= n, j++]; j-1];
    Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Nov 17 2022, after Alois P. Heinz *)
  • PARI
    a(n) = -1+floor(log(((n+0.2)*sqrt(5)))/log((1+sqrt(5))/2))
    
  • PARI
    a(n)=local(m); if(n<1,0,m=0; until(fibonacci(m)>n,m++); m-2)
    
  • Python
    from sympy import fibonacci
    def a(n):
        if n<1: return 0
        m=0
        while fibonacci(m)<=n: m+=1
        return m-2
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 09 2017
    
  • Python
    def A072649(n):
        a, b, c = 0, 1, -2
        while a <= n:
            a, b = b, a+b
            c += 1
        return c # Chai Wah Wu, Nov 04 2024
    (MIT/GNU Scheme) (define (A072649 n) (let ((b (A072648 n))) (+ -1 b (floor->exact (/ n (A000045 (1+ b))))))) ;; (The implementation below is better)
    
  • Scheme
    (define (A072649 n) (if (<= n 3) n (let loop ((k 5)) (if (> (A000045 k) n) (- k 2) (loop (+ 1 k)))))) ;; (Use this with the memoized implementation of A000045 given under that entry. No floating point arithmetic is involved). - Antti Karttunen, Oct 06 2017

Formula

G.f.: (Sum_{n>1} x^Fibonacci(n))/(1-x). - Michael Somos, Apr 25 2003
From Hieronymus Fischer, May 02 2007: (Start)
a(n) = floor(log_phi((sqrt(5)*n + sqrt(5*n^2+4))/2)) - 1, where phi is A001622.
a(n) = floor(arcsinh(sqrt(5)*n/2)/log(phi)) - 1.
a(n) = A108852(n) - 2. (End)
a(n) = -1 + floor( log_phi( (n+0.2)*sqrt(5) ) ), where log_phi(x) is the logarithm to the base (1+sqrt(5))/2. - Ralf Stephan, May 14 2007
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)) (A073010). - Amiram Eldar, Feb 18 2024

Extensions

Typo fixed by Charles R Greathouse IV, Oct 28 2009

A010056 Characteristic function of Fibonacci numbers: a(n) = 1 if n is a Fibonacci number, otherwise 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Understood as a binary number, Sum_{k>=0} a(k)/2^k, the resulting decimal expansion is 1.910278797207865891... = Fibonacci_binary+0.5 (see A084119) or Fibonacci_binary_constant-0.5 (see A124091), respectively. - Hieronymus Fischer, May 14 2007
a(n)=1 if and only if there is an integer m such that x=n is a root of p(x)=25*x^4-10*m^2*x^2+m^4-16. Also a(n)=1 iff floor(s)<>floor(c) or ceiling(s)<>ceiling(c) where s=arcsinh(sqrt(5)*n/2)/log(phi), c=arccosh(sqrt(5)*n/2)/log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, May 17 2007
a(A000045(n)) = 1; a(A001690(n)) = 0. - Reinhard Zumkeller, Oct 10 2013
Image, under the map sending a,b,c -> 1, d,e,f -> 0, of the fixed point, starting with a, of the morphism sending a -> ab, b -> c, c -> cd, d -> d, e -> ef, f -> e. - Jeffrey Shallit, May 14 2016

Crossrefs

Decimal expansion of Fibonacci binary is in A084119.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Cf. A079586 (Dirich. g.f. at s=1).

Programs

  • Haskell
    import Data.List (genericIndex)
    a010056 = genericIndex a010056_list
    a010056_list = 1 : 1 : ch [2..] (drop 3 a000045_list) where
       ch (x:xs) fs'@(f:fs) = if x == f then 1 : ch xs fs else 0 : ch xs fs'
    -- Reinhard Zumkeller, Oct 10 2013
    
  • Maple
    a:= n-> (t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2):
    seq(a(n), n=0..144);  # Alois P. Heinz, Dec 06 2020
  • Mathematica
    Join[{1},With[{fibs=Fibonacci[Range[15]]},If[MemberQ[fibs,#],1,0]& /@Range[100]]]  (* Harvey P. Dale, May 02 2011 *)
  • PARI
    a(n)=my(k=n^2);k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)) \\ Charles R Greathouse IV, Jul 30 2012
    
  • Python
    from sympy.ntheory.primetest import is_square
    def A010056(n): return int(is_square(m:=5*n**2-4) or is_square(m+8)) # Chai Wah Wu, Mar 30 2023

Formula

G.f.: (Sum_{k>=0} x^A000045(k)) - x. - Hieronymus Fischer, May 17 2007

A130233 a(n) is the maximal k such that Fibonacci(k) <= n (the "lower" Fibonacci Inverse).

Original entry on oeis.org

0, 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Comments

Inverse of the Fibonacci sequence (A000045), nearly, since a(Fibonacci(n)) = n except for n = 1 (see A130234 for another version). a(n) + 1 is equal to the partial sum of the Fibonacci indicator sequence (see A104162).

Examples

			a(10) = 6, since Fibonacci(6) = 8 <= 10 but Fibonacci(7) = 13 > 10.
		

Crossrefs

Cf. A130235 (partial sums), A104162 (first differences).
Other related sequences: A000045, A130234, A130237, A130239, A130255, A130259, A108852. Lucas inverse: A130241.
Cf. A001622 (golden ratio), A002390 (its log).

Programs

  • Mathematica
    fibLLog[0] := 0; fibLLog[1] := 2; fibLLog[n_Integer] := fibLLog[n] = If[n < Fibonacci[fibLLog[n - 1] + 1], fibLLog[n - 1], fibLLog[n - 1] + 1]; Table[fibLLog[n], {n, 0, 88}] (* Alonso del Arte, Sep 01 2013 *)
  • PARI
    a(n)=log(sqrt(5)*n+1.5)\log((1+sqrt(5))/2) \\ Charles R Greathouse IV, Mar 21 2012

Formula

a(n) = floor(log_phi((sqrt(5)*n + sqrt(5*n^2+4))/2)) where phi = (1+sqrt(5))/2 = A001622.
a(n) = floor(arcsinh(sqrt(5)*n/2) / log(phi)), with log(phi) = A002390.
a(n) = A130234(n+1) - 1.
G.f.: g(x) = 1/(1-x) * Sum_{k>=1} x^Fibonacci(k).
a(n) = floor(log_phi(sqrt(5)*n+1)), n >= 0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007

A130234 Minimal index k of a Fibonacci number such that Fibonacci(k) >= n (the 'upper' Fibonacci Inverse).

Original entry on oeis.org

0, 1, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 0

Views

Author

Hieronymus Fischer, May 17 2007

Keywords

Comments

Inverse of the Fibonacci sequence (A000045), nearly, since a(Fibonacci(n)) = n except for n = 2 (see A130233 for another version). a(n+1) is equal to the partial sum of the Fibonacci indicator sequence (see A104162).

Examples

			a(10) = 7, since Fibonacci(7) = 13 >= 10 but Fibonacci(6) = 8 < 10.
		

Crossrefs

Partial sums: A130236.
Other related sequences: A000045, A130233, A130256, A130260, A104162, A108852.
Lucas inverse: A130241 - A130248.

Programs

  • Maple
    A130234 := proc(n)
        local i;
        for i from 0 do
            if A000045(i) >= n then
                return i;
            end if;
        end do:
    end proc: # R. J. Mathar, Jan 31 2015
  • Mathematica
    a[n_] := For[i = 0, True, i++, If[Fibonacci[i] >= n, Return[i]]];
    a /@ Range[0, 80] (* Jean-François Alcover, Apr 13 2020 *)
  • PARI
    a(n)=my(k);while(fibonacci(k)Charles R Greathouse IV, Feb 03 2014, corrected by M. F. Hasler, Apr 07 2021

Formula

a(n) = ceiling(log_phi((sqrt(5)*n + sqrt(5*n^2-4))/2)) = ceiling(arccosh(sqrt(5)*n/2)/log(phi)) where phi = (1+sqrt(5))/2, the golden ratio, for n > 0.
a(n) = A130233(n-1) + 1 for n > 0.
G.f.: x/(1-x) * Sum_{k >= 0} x^Fibonacci(k).
a(n) = ceiling(log_phi(sqrt(5)*n - 1)) for n > 0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
a(n) = A108852(n-1). - R. J. Mathar, Jan 31 2015

A104162 Indicator sequence for the Fibonacci numbers.

Original entry on oeis.org

1, 2, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2005

Keywords

Comments

Without multiplicities, this is A010056.
The number of nonnegative integer solutions of x^4 - 10*n^2*x^2 + 25*n^4 - 16 = 0. - Hieronymus Fischer, May 17 2007

Examples

			a(1)=2 since F(1)=F(2)=1.
		

Crossrefs

Cf. A000045.
Partial sums are in A108852.
See also A130233 and A130234.

Programs

Formula

G.f.: Sum_{k>=0} x^Fibonacci(k).
From Hieronymus Fischer, May 17 2007: (Start)
a(n) = 1+floor(arcsinh(sqrt(5)*n/2)/log(phi))-ceiling(arccosh(sqrt(5)*n/2)/log(phi)), for n>0, where phi=(1+sqrt(5))/2.
a(n) = A108852(n) - A108852(n-1) for n>0.
a(n) = A130233(n) - A130233(n-1) for n>0.
a(n) = 1 + A130233(n) - A130234(n) for n>0.
a(n) = A130234(n+1) - A130234(n) for n>=0. (End)

A130245 Number of Lucas numbers (A000032) <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Hieronymus Fischer, May 19 2007, Jul 02 2007

Keywords

Comments

Partial sums of the Lucas indicator sequence A102460.
For n>=2, we have a(A000032(n)) = n + 1.

Examples

			a(9)=5 because there are 5 Lucas numbers <=9 (2,1,3,4 and 7).
		

Crossrefs

Partial sums of A102460.
For partial sums of this sequence, see A130246. Other related sequences: A000032, A130241, A130242, A130247, A130249, A130253, A130255, A130259.
For Fibonacci inverse, see A130233 - A130240, A104162, A108852.

Programs

  • Magma
    [0] cat [1+Floor(Log((2*n+1)/2)/Log((1+Sqrt(5))/2)): n in [1..100]]; // G. C. Greubel, Sep 09 2018
    
  • Mathematica
    Join[{0}, Table[1+Floor[Log[GoldenRatio, (2*n+1)/2]], {n,1,100}]] (* G. C. Greubel, Sep 09 2018 *)
  • PARI
    A102460(n) = { my(u1=1,u2=3,old_u1); if(n<=2,sign(n),while(n>u2,old_u1=u1;u1=u2;u2=old_u1+u2);(u2==n)); };
    A130245(n) = if(!n,n,A102460(n)+A130245(n-1));
    \\ Or just as:
    c=0; for(n=0,123,c += A102460(n); print1(c,", ")); \\ Antti Karttunen, May 13 2018
    
  • Python
    from itertools import count, islice
    def A130245_gen(): # generator of terms
        yield from (0, 1, 2)
        a, b = 3,4
        for i in count(3):
            yield from (i,)*(b-a)
            a, b = b, a+b
    A130245_list = list(islice(A130245_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n) = 1 +floor(log_phi((n+sqrt(n^2+4))/2)) = 1 +floor(arcsinh(n/2)/log(phi)) for n>=2, where phi = (1+sqrt(5))/2.
a(n) = A130241(n)+1 = A130242(n+1) for n>=2.
G.f.: g(x) = 1/(1-x)*sum{k>=0, x^Lucas(k)}.
a(n) = 1 +floor(log_phi(n+1/2)) for n>=1, where phi is the golden ratio.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3/2 - Pi/(6*sqrt(3)) - log(3)/2. - Amiram Eldar, Jul 25 2025

A130253 Number of Jacobsthal numbers (A001045) <=n.

Original entry on oeis.org

1, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Hieronymus Fischer, May 20 2007

Keywords

Comments

Partial sums of the Jacobsthal indicator sequence (A105348).
For n<>1, we have a(A001045(n))=n+1.

Examples

			a(9)=5 because there are 5 Jacobsthal numbers <=9 (0,1,1,3 and 5).
		

Crossrefs

For partial sums see A130252. Other related sequences A001045, A130249, A130250, A130253, A105348. Also A130233, A130235, A130241, A108852, A130245.

Programs

Formula

a(n) = floor(log_2(3n+1)) + 1 = ceiling(log_2(3n+2)).
a(n) = A130249(n) + 1 = A130250(n+1).
G.f.: 1/(1-x)*(Sum_{k>=0} x^A001045(k)).

A362503 a(n) is the number of k such that n - A000045(k) is a square.

Original entry on oeis.org

1, 3, 3, 2, 2, 3, 2, 1, 1, 3, 2, 1, 2, 1, 2, 0, 1, 4, 1, 1, 0, 2, 2, 0, 1, 2, 2, 1, 1, 1, 2, 0, 0, 1, 1, 1, 1, 3, 3, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 3, 1, 1, 0, 1, 1, 1, 2, 0, 2, 0, 0, 1, 0, 2, 2, 1, 1, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2, 1, 1, 1, 0, 0, 2, 1, 1, 0, 1, 1, 0, 0, 0, 2
Offset: 0

Views

Author

Robert Israel, Apr 22 2023

Keywords

Comments

Number of ways to write n as the sum of a Fibonacci number and a square, where A000045(1) and A000045(2) are counted as separate.

Examples

			a(5) = 3 because 5 = A000045(1) + 2^2 = A000045(2) + 2^2 = A000045(5) + 0^2.
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get terms <= N
    V:= Array(0..N):
    for i from 0 do
      f:= combinat:-fibonacci(i);
      if f >= N then break fi;
      s:= floor(sqrt(N-f));
      J:=[seq(f+i^2, i=0..s)];
      V[J]:= V[J] +~ 1;
    od:
    convert(V,list);
  • PARI
    f(n) = my(k=1); while (fibonacci(k) <= n, k++); k; \\ A108852
    a(n) = sum(k=0, f(n), issquare(n-fibonacci(k))); \\ Michel Marcus, Apr 23 2023

Formula

a(1 + A000045(6*k)^2/4) >= 4.

A375642 a(n) is the number of i for which n - Fibonacci(i) is prime.

Original entry on oeis.org

0, 1, 3, 3, 3, 3, 3, 4, 1, 3, 2, 3, 3, 3, 3, 3, 1, 4, 3, 4, 2, 2, 2, 5, 2, 3, 1, 2, 1, 3, 3, 5, 1, 3, 0, 3, 3, 3, 3, 2, 2, 4, 2, 5, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 1, 4, 3, 5, 2, 3, 1, 3, 2, 4, 2, 1, 2, 5, 2, 6, 3, 2, 1, 2, 2, 4, 3, 2, 1, 5, 1, 3, 2, 2, 1, 2, 3, 5, 1, 3, 1, 3, 2, 3, 1
Offset: 1

Views

Author

Robert Israel, Aug 22 2024

Keywords

Examples

			a(5) = 3 because 5 - Fibonacci(0) = 5, 5 - Fibonacci(3) = 3 and 5 - Fibonacci(4) = 2 are prime.
		

Crossrefs

Programs

  • Maple
    fcount:= proc(n) local f,i,d,c;
      c:= 0;
      for i from 0 do
        f:= combinat:-fibonacci(i);
        if f >= n then return c fi;
        if isprime(n-f) then
          c:= c+1;
        fi
      od;
    end proc:
    map(f, [$1..200]);
  • Mathematica
    a[n_]:=Sum[Boole[PrimeQ[n-Fibonacci[i]]],{i,Select[Range[0,n],n>Fibonacci[#]&]}]; Array[a,99] (* Stefano Spezia, Aug 23 2024 *)

A335741 Number of Pell numbers (A000129) <= n.

Original entry on oeis.org

1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Ovidiu Bagdasar, Jun 20 2020

Keywords

Comments

The sequence is constant on the interval A000129(k) < n <= A000129(k+1).

Examples

			The Pell numbers A000129 are 0,1,2,5,12,29,70,...
We have a(2)=a(3)=a(4)=3, since there are three Pell numbers less than or equal to 2,3 and 4, respectively.
		

Crossrefs

Cf. A000129 (Pell Numbers), A108852 (Fibonacci), A130245 (Lucas), A130253 (Jacobsthal).
Partial sums of A105349.

Programs

Formula

a(n) = 1+floor(log_alpha(2*sqrt(2)*n+1)), n>=0, where alpha=1+sqrt(2).
Showing 1-10 of 18 results. Next