cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108866 Numerator of Sum_{k=1..n} 2^k/k.

Original entry on oeis.org

0, 2, 4, 20, 32, 256, 416, 4832, 8192, 42496, 74752, 1467392, 2650112, 62836736, 115552256, 42790912, 79691776, 2535587840, 4766040064, 170851041280, 1617069867008, 3070050172928, 5843921666048, 256460544016384, 490390373269504, 4697678227177472, 9016382767235072
Offset: 0

Views

Author

N. J. A. Sloane, Jul 12 2005

Keywords

Comments

Conjecture: for n > 3, numerator(-2/n + Sum_{k=1..n} 2^k/k) == 0 (mod n^2) if and only if n is prime. See my formula below. Cf. A332786. - Thomas Ordowski, Mar 02 2020

Examples

			The initial values of the sum are 2, 4, 20/3, 32/3, 256/15, 416/15, 4832/105, 8192/105, 42496/315, 74752/315, 1467392/3465, 2650112/3465, 62836736/45045, 115552256/45045, 42790912/9009, 79691776/9009, 2535587840/153153, 4766040064/153153, 170851041280/2909907, ...
		

References

  • A. M. Robert, A Course in p-adic Analysis, Springer, 2000; see p. 278.

Crossrefs

Cf. A087910. The denominators are A229726 (repeated).

Programs

  • Mathematica
    Join[{0},Accumulate[Table[2^n/n,{n,30}]]//Numerator] (* Harvey P. Dale, Oct 28 2018 *)
  • PARI
    a(n) = numerator(sum(k=1, n, 2^k/k)); \\ Michel Marcus, Mar 07 2020

Formula

a(n) = numerator(Sum_{k=1..n} (2^k-2)/k + Sum_{k=1..n} 2/k). This formula is a heuristic of my conjecture in the comments section. Cf. A330718. - Thomas Ordowski, Mar 02 2020

Extensions

a(0) corrected by A.H.M. Smeets, Mar 06 2020