cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A229726 Denominator of Sum_{k=1..2n+1} 2^k/k.

Original entry on oeis.org

1, 3, 15, 105, 315, 3465, 45045, 9009, 153153, 2909907, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725, 96845140757687397075, 96845140757687397075, 5132792460157432044975
Offset: 0

Views

Author

N. J. A. Sloane, Sep 28 2013

Keywords

Comments

Numerator is A108866.

Examples

			2, 20/3, 256/15, 4832/105, 42496/315, 1467392/3465, 62836736/45045, 42790912/9009, 2535587840/153153, 170851041280/2909907, 3070050172928/14549535, 256460544016384/334639305, 4697678227177472/1673196525, 52001663422038016/5019589575, ...
		

Crossrefs

Programs

  • PARI
    for(n=0,26,print1(denominator(sum(k=1,2*n+1,2^k/k)),", ")) \\ Hugo Pfoertner, Mar 07 2020

A087910 Exponent of the greatest power of 2 dividing the numerator of 2^1/1 + 2^2/2 + 2^3/3 + ... + 2^n/n.

Original entry on oeis.org

1, 2, 2, 5, 8, 5, 5, 13, 9, 10, 10, 12, 12, 12, 12, 22, 17, 18, 18, 21, 22, 21, 21, 27, 25, 26, 26, 27, 27, 27, 27, 40, 33, 34, 34, 37, 39, 37, 37, 48, 41, 42, 42, 44, 44, 44, 44, 54, 49, 50, 50, 53, 54, 53, 53, 58, 57, 59, 62, 58, 58, 58
Offset: 1

Views

Author

Robin Chapman, Oct 17 2003

Keywords

Comments

Problem 9 of the 2002 Sydney University Mathematical Society Problems competition asked for a proof that a(n) tends to infinity with n. While this is immediate from the theory of the 2-adic logarithm, elementary proofs are available.
a(n) tends to infinity with n implies that log(-1) = 0 in the 2-adic field, by setting x = 2 in -log(1-x) = Sum_{k>=1} x^k/k. - Jianing Song, Aug 05 2019

Examples

			a(5) = 8 as 2^1/1 + 2^2/2 + 2^3/3 + 2^4/4 + 2^5/5 = 256/15 whose numerator is divisible by 2^8 but not by 2^9.
		

References

  • A. M. Robert, A Course in p-adic Analysis, Springer, 2000; see p. 278.

Crossrefs

Programs

  • Maple
    S:= 0:
    for n from 1 to 100 do
      S:= S + 2^n/n;
      a[n]:= padic:-ordp(numer(S),2);
    od:
    seq(a[n],n=1..100); # Robert Israel, Jun 09 2015
  • Mathematica
    s[n_] := -2^(n + 1) LerchPhi[2, 1, n + 1] - I Pi;
    a[n_] := IntegerExponent[Numerator[Simplify[s[n]]], 2];
    Array[a, 62] (* Peter Luschny, Feb 22 2020 *)
  • PARI
    a(n) = valuation(sum(k=1,n,2^k/k), 2) \\ Jianing Song, Feb 22 2020

Formula

a(n) = A007814(A108866(n)). - Michel Marcus, Feb 22 2020
Sum_{k=1..n} 2^k/k = (2^n/n)*Sum_{k=0..n-1} 1/binomial(n-1,k), so a(n) >= n - v(n,2) - max_{k=0..n-1} v(binomial(n-1,k),2) = n - A007814(n) - A119387(n) = n - floor(log_2(n)), where v(n,2) is the 2-adic valuation of n. It seems that the equality holds if and only if n = 2^m - 1 for some m. - Jianing Song, Feb 22 2020

A332786 a(n) = numerator(-1/n + Sum_{k=1..n} 2^(k-1)/k).

Original entry on oeis.org

0, 3, 3, 61, 25, 137, 343, 32663, 2357, 74689, 66671, 5299069, 2416531, 115545821, 106974277, 637525199, 74575583, 1588674349, 4496071973, 3234136824109, 1535024393629, 5843920343363, 5575228585159, 1961561381531581, 93953561866435, 9016382638527647, 2888981280567587, 200248741591132607, 96525489421136333
Offset: 1

Views

Author

Thomas Ordowski, Feb 24 2020

Keywords

Comments

If p > 3 is a prime, then p^2 | a(p).
Does the above statement follow from Wolstenholme's theorem?
If p is a Wolstenholme prime (A088164), then p^3 | a(p).
However, it should be noted that also 7^3 | a(7).
Conjecture: there are no pseudoprimes m such that m^2 | a(m).
Is 7^2 the only weak pseudoprime (i.e., a composite m such that m | a(m))?

Examples

			a(5) = numerator(-1/5 + 1/1+2/2+4/3+8/4+16/5) = numerator(128/15 - 1/5) = numerator(25/3) = 25.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; numer(-1/n + add(2^(k-1)/k,k=1..n)) end proc:
    map(f, [$1..30]); # Robert Israel, Sep 15 2024
  • Mathematica
    n = 30; Numerator[Accumulate @ Table[(2^(k-1))/k, {k, 1, n}] - 1/Range[n]] (* Amiram Eldar, Feb 24 2020 *)
  • PARI
    a(n) = numerator(-1/n + sum(k=1, n, 2^(k-1)/k)); \\ Michel Marcus, Feb 24 2020

Formula

a(n) = numerator(-2/n + S(n))/2 for odd n and a(n) = numerator(-2/n + S(n)) for even n, where S(n) = Sum_{k=1..n} 2^k/k, see A108866 / A229726.
a(n) = numerator(Sum_{k=1..n} (2^(k-1)-1)/k + Sum_{k=1..n-1} 1/k), see A330718 / A330719 and A001008 / A002805.

Extensions

More terms from Amiram Eldar, Feb 24 2020

A229727 Numerator of Sum_{k=1..2n+1} 2^k/k.

Original entry on oeis.org

2, 20, 256, 4832, 42496, 1467392, 62836736, 42790912, 2535587840, 170851041280, 3070050172928, 256460544016384, 4697678227177472, 52001663422038016, 5598478396465086464, 647670579588837146624, 2427980359983876276224, 9138219784535816536064, 1277040945143933271277568
Offset: 0

Views

Author

N. J. A. Sloane, Sep 28 2013

Keywords

Examples

			2, 20/3, 256/15, 4832/105, 42496/315, 1467392/3465, 62836736/45045, 42790912/9009, 2535587840/153153, 170851041280/2909907, 3070050172928/14549535, 256460544016384/334639305, 4697678227177472/1673196525, 52001663422038016/5019589575, ...
		

Crossrefs

Programs

  • Mathematica
    Take[Numerator[Accumulate[Table[2^k/k,{k,51}]]],{1,-1,2}] (* Harvey P. Dale, Jun 28 2021 *)
Showing 1-4 of 4 results.