cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A108982 Inverse binomial of A003949.

Original entry on oeis.org

1, 6, 29, 146, 729, 3646, 18229, 91146, 455729, 2278646, 11393229, 56966146, 284830729, 1424153646, 7120768229, 35603841146, 178019205729, 890096028646, 4450480143229, 22252400716146, 111262003580729, 556310017903646
Offset: 0

Views

Author

Philippe Deléham, Jul 23 2005

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j] = 1, A[i,i] = -3, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n>=1, a(n-1) = charpoly(A,2). - Milan Janjic, Jan 27 2010

Programs

  • GAP
    List([0..25], n-> (7*5^n - (-1)^n)/6); # G. C. Greubel, Sep 25 2019
  • Magma
    [(7*5^n - (-1)^n)/6: n in [0..25]]; // G. C. Greubel, Sep 25 2019
    
  • Maple
    seq((7*5^n - (-1)^n)/6, n=0..25); # G. C. Greubel, Sep 25 2019
  • Mathematica
    LinearRecurrence[{4,5},{1,6},30] (* Harvey P. Dale, Jul 07 2013 *)
  • PARI
    vector(26, n, (7*5^(n-1) + (-1)^n)/6) \\ G. C. Greubel, Sep 25 2019
    
  • Sage
    [(7*5^n - (-1)^n)/6 for n in (0..25)] # G. C. Greubel, Sep 25 2019
    

Formula

a(n) = 4*a(n-1) + 5*a(n-2), a(0) = 1, a(1) = 6.
a(2n) = 5*a(2n-1) - 1 and a(2n+1) = 5*a(2n) + 1.
From G. C. Greubel, Sep 25 2019: (Start)
G.f.: (1 + 2*x)/((1+x)*(1-5*x)).
E.g.f.: (7*exp(5*x) - exp(-x))/6. (End)

Extensions

Corrected and extended by T. D. Noe, Nov 07 2006