A109011 a(n) = gcd(n,8).
8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).
Programs
-
Mathematica
a[n_]:= GCD[n,8]; Array[a, 100, 0] (* Stefano Spezia, Nov 19 2018 *)
-
PARI
a(n) = gcd(n, 8) \\ David A. Corneth, Nov 19 2018
Formula
a(n) = 1 + [2|n] + 2*[4|n] + 4*[8|n], where [x|y] = 1 when x divides y, 0 otherwise.
a(n) = a(n-8).
Multiplicative with a(p^e) = gcd(p^e, 8). - David W. Wilson, Jun 12 2005
G.f.: ( -8 - x - 2*x^2 - x^3 - 4*x^4 - x^5 - 2*x^6 - x^7 ) / ( (x-1)*(1+x)*(x^2+1)*(x^4+1) ). - R. J. Mathar, Apr 04 2011
Dirichlet g.f.: zeta(s)*(1 + 1/2^s + 2/4^s + 4/8^s). - R. J. Mathar, Apr 04 2011
a(n) = 2^(-(101*m^7 - 2464*m^6 + 23786*m^ 5 -115360*m^4 + 293909*m^3 - 371056*m^2 + 186204*m - 15120)/5040) where m = (n mod 8). - Luce ETIENNE, Nov 18 2018