cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109013 a(n) = gcd(n,10).

Original entry on oeis.org

10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 5, 2, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A109004.

Programs

Formula

a(n) = 1 + [2|n] + 4*[5|n] + 4*[10|n], where [x|y] = 1 when x divides y, 0 otherwise.
a(n) = a(n-10).
Multiplicative with a(p^e, 10) = gcd(p^e, 10). - David W. Wilson, Jun 12 2005
G.f.: ( -10 - x - 2*x^2 - x^3 - 2*x^4 - 5*x^5 - 2*x^6 - x^7 - 2*x^8 - x^9 ) / ( (x-1)*(1+x)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x+1) ). - R. J. Mathar, Apr 04 2011
Dirichlet g.f.: zeta(s)*(1 + 1/2^s + 4/5^s + 4/10^s). - R. J. Mathar, Apr 04 2011
a(n) = ((n-1) mod 2 + 1)*(4*floor(((n-1) mod 5)/4) + 1). - Gary Detlefs, Dec 28 2011