cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A109287 4-almost primes equal to p*q + 1, where p and q are (not necessarily distinct) primes.

Original entry on oeis.org

16, 36, 40, 56, 88, 135, 156, 184, 204, 210, 220, 248, 250, 260, 296, 306, 315, 328, 330, 340, 342, 372, 414, 459, 472, 490, 516, 536, 546, 580, 584, 636, 650, 686, 690, 708, 714, 732, 735, 738, 804, 808, 819, 836, 850, 852, 870, 872, 940, 950, 966, 975, 996
Offset: 1

Views

Author

Keywords

Comments

4-almost primes of the form semiprime + 1.

Examples

			a(1) = 16 because (3*5+1)=(2^4) = 16.
a(2) = 36 because (5*7+1)=((2^2)*(3^2)) = 36.
a(3) = 40 because (3*13+1)=((2^3)*5) = 40.
a(4) = 56 because (5*11+1)=((2^3)*7) = 56.
a(5) = 88 because (3*29+1)=((2^3)*11) = 88.
a(6) = 135 because (2*67+1)=((3^3)*5) = 135.
a(7) = 156 because (5*31+1)=((2^2)*3*13) = 156.
a(8) = 184 because (3*61+1)=((2^3)*23) = 184.
		

Crossrefs

Primes are in A000040. Semiprimes are in A001358. 4-almost primes are in A014613.
Primes of the form semiprime + 1 are in A005385 (safe primes).
Semiprimes of the form semiprime + 1 are in A109373.
3-almost primes of the form semiprime + 1 are in A109067.
4-almost primes of the form semiprime + 1 are in this sequence.
5-almost primes of the form semiprime + 1 are in A109383.
Least n-almost prime of the form semiprime + 1 are in A128665.
Similar to A076153; after A076153(0)=3 next difference is A076153(100)=1792 whereas A109287(100)=1794.

Programs

  • Mathematica
    bo[n_] := Plus @@ Last /@ FactorInteger[n]; Select[Range[1000], bo[ # ] == 4 && bo[ # - 1] == 2 &] (* Ray Chandler, Aug 27 2005 *)
  • PARI
    is(n)=bigomega(n)==4 && bigomega(n-1)==2 \\ Charles R Greathouse IV, Sep 16 2015

Formula

a(n) is in this sequence iff a(n) is in A014613 and (a(n)-1) is in A001358.

Extensions

Extended by Ray Chandler, Aug 27 2005
Edited by Ray Chandler, Mar 20 2007

A263990 Nonsquare numbers k such that k and k+1 are semiprimes.

Original entry on oeis.org

14, 21, 33, 34, 38, 57, 85, 86, 93, 94, 118, 122, 133, 141, 142, 145, 158, 177, 201, 202, 205, 213, 214, 217, 218, 253, 298, 301, 302, 326, 334, 381, 393, 394, 445, 446, 453, 481, 501, 514, 526, 537, 542, 553, 565, 622, 633, 634, 694, 697, 698, 706, 717, 745, 766, 778, 793, 802, 817, 842, 865, 878
Offset: 1

Views

Author

Zak Seidov, Oct 31 2015

Keywords

Comments

If k and k+1 are semiprimes then k+1 is always nonsquare while k can be a square (see A263951). The sequence gives the nonsquare terms of A070552. Each of the numbers k and k+1 is a product of two distinct primes.
Numbers that are terms in A070552 but not in A263951.
The subsequence of triples of consecutive squarefree semiprimes is A039833. - R. J. Mathar, Aug 13 2019

Crossrefs

Subsequence of A070552, A086263.

Programs

  • Mathematica
    Select[Range[1000], ! IntegerQ[Sqrt[#]] && 2 == PrimeOmega[#] == PrimeOmega[# + 1] &]
  • PARI
    is(n)=if(n%2, isprime((n+1)/2) && bigomega(n)==2 && !isprimepower(n), isprime(n/2) && bigomega(n+1)==2) \\ Charles R Greathouse IV, Apr 25 2016

Formula

a(n) = A109288(n) - 1. - Amiram Eldar, Aug 08 2025

A109290 Composite numbers which are not of the forms p*q -+ 1, where p and q are (not necessarily distinct) primes.

Original entry on oeis.org

4, 6, 12, 18, 28, 30, 42, 44, 46, 49, 51, 55, 60, 62, 65, 69, 72, 74, 77, 80, 82, 91, 98, 99, 100, 102, 104, 106, 108, 111, 115, 125, 126, 129, 136, 138, 148, 150, 152, 153, 155, 161, 164, 166, 169, 171, 172, 174, 175, 180, 183, 185, 187, 189, 190, 192, 194, 196
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 20 2005

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n)
       if n::even then numtheory:-bigomega(n+1) <> 2 and numtheory:-bigomega(n-1) <> 2
       elif n mod 4 = 1 then not isprime(n) and not isprime((n+1)/2)
       else not isprime(n) and not isprime((n-1)/2)
       fi
    end proc:
    select(filter, [$4..200]); # Robert Israel, Apr 20 2021
  • Mathematica
    bo[n_] := Plus @@ Last /@ FactorInteger[n]; Select[Range[2, 200], ! (PrimeQ[ # ] || bo[ # - 1] == 2 || bo[ # + 1] == 2) &] (* Ray Chandler, Aug 27 2005 *)

Extensions

Corrected and extended by Ray Chandler, Aug 27 2005

A109289 Composite numbers which are not of the form p*q + 1, where p and q are distinct primes.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 18, 20, 21, 24, 25, 26, 28, 30, 32, 33, 38, 42, 44, 45, 46, 48, 49, 50, 51, 54, 55, 57, 60, 62, 64, 65, 68, 69, 72, 74, 76, 77, 80, 81, 82, 84, 85, 90, 91, 93, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 114, 115, 117, 118, 121, 122, 125, 126, 128
Offset: 1

Views

Author

Giovanni Teofilatto, Aug 20 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 130], ! (PrimeQ[ # ] || (Plus @@ Last /@ FactorInteger[ # - 1] == 2 && Length[FactorInteger[ # - 1]] == 2)) &] (* Ray Chandler, Aug 25 2005 *)
    fQ[n_] := Last /@ FactorInteger[n] != {1, 1}; Select[ Range[2, 128], !PrimeQ[ # ] && fQ[ # - 1] &] (* Robert G. Wilson v *)

Extensions

Extended by Robert G. Wilson v and Ray Chandler, Aug 25 2005

A173967 Sums of two consecutive numbers that are nonsquare semiprimes.

Original entry on oeis.org

29, 43, 67, 69, 77, 115, 171, 173, 187, 189, 237, 245, 267, 283, 285, 291, 317, 355, 403, 405, 411, 427, 429, 435, 437, 507, 597, 603, 605, 653, 669, 763, 787, 789, 891, 893, 907, 963, 1003, 1029, 1053, 1075, 1085, 1107, 1131, 1245, 1267, 1269, 1389, 1395
Offset: 1

Views

Author

Keywords

Examples

			14=2*7; 15=3*5; 14+15=29,
21=3*7; 22=2*11; 21+22=43,..
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Last/@FactorInteger[n]=={1,1};lst={};Do[If[f[n],If[f[n+1],AppendTo[lst,2*n+1]]],{n,7!}];lst

Formula

a(n) = A263990(n) + A109288(n). - Andrey Zabolotskiy, Apr 07 2025

Extensions

New name from Andrey Zabolotskiy, Apr 07 2025
Showing 1-5 of 5 results.