A109345 a(n) = 5^((n^2 - n)/2).
1, 1, 5, 125, 15625, 9765625, 30517578125, 476837158203125, 37252902984619140625, 14551915228366851806640625, 28421709430404007434844970703125
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
GAP
List([0..12], n -> 5^Binomial(n,2)); # G. C. Greubel, Feb 09 2019
-
Magma
[5^Binomial(n,2): n in [0..12]]; // G. C. Greubel, Feb 09 2019
-
Maple
seq(5^(binomial(2+n,n)), n=-2..8); # Zerinvary Lajos, Jun 12 2007
-
Mathematica
5^Binomial[Range[0, 12], 2] (* G. C. Greubel, Feb 09 2019 *)
-
PARI
a(n)=5^binomial(n,2) \\ Charles R Greathouse IV, Jan 11 2012
-
Sage
[5^binomial(n,2) for n in (0..12)] # G. C. Greubel, Feb 09 2019
Formula
a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(5i, j).
G.f. A(x) satisfies: A(x) = 1 + x * A(5*x). - Ilya Gutkovskiy, Jun 04 2020
Comments