A027872
a(n) = Product_{i=1..n} (5^i - 1).
Original entry on oeis.org
1, 4, 96, 11904, 7428096, 23205371904, 362560730628096, 28324694519589371904, 11064305472020078810628096, 21609960560733744406929189371904, 211034749490954911990173458030810628096
Offset: 0
-
[1] cat [&*[ 5^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
A027872 := proc(n)
mul( 5^i-1, i=1..n) ;
end proc: # R. J. Mathar, Mar 12 2013
-
Table[Product[(5^k-1),{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *)
Abs@QPochhammer[5, 5, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
Join[{1},FoldList[Times,5^Range[10]-1]] (* Harvey P. Dale, Dec 28 2021 *)
-
a(n) = prod(i=1, n, 5^i-1); \\ Michel Marcus, Nov 21 2015
A053292
Number of nonsingular n X n matrices over GF(5).
Original entry on oeis.org
1, 4, 480, 1488000, 116064000000, 226614960000000000, 11064475422000000000000000, 13506266841692625000000000000000000, 412177498341354683437500000000000000000000000
Offset: 0
-
[1] cat [&*[(5^n - 5^k): k in [0..n-1]]: n in [1..8]]; // Bruno Berselli, Jan 28 2013
-
Table[Product[5^n - 5^k, {k,0,n-1}], {n,0,10}] (* Geoffrey Critzer, Jan 26 2013 *)
-
for(n=0,10, print1(prod(k=0,n-1, 5^n - 5^k), ", ")) \\ G. C. Greubel, May 31 2018
A109354
a(n) = 6^((n^2 - n)/2).
Original entry on oeis.org
1, 1, 6, 216, 46656, 60466176, 470184984576, 21936950640377856, 6140942214464815497216, 10314424798490535546171949056, 103945637534048876111514866313854976, 6285195213566005335561053533150026217291776, 2280250319867037997421842330085227917956272625811456
Offset: 0
A157832
Triangle read by rows: the coefficient [x^k] of the polynomial Product_{i=1..n} (5^(i-1)-x) in row n, column k, 0 <= k <= n.
Original entry on oeis.org
1, 1, -1, 5, -6, 1, 125, -155, 31, -1, 15625, -19500, 4030, -156, 1, 9765625, -12203125, 2538250, -101530, 781, -1, 30517578125, -38144531250, 7944234375, -319819500, 2542155, -3906, 1, 476837158203125, -596038818359375
Offset: 0
Triangle begins
1;
1, -1;
5, -6, 1;
125, -155, 31, -1;
15625, -19500, 4030, -156, 1;
9765625, -12203125, 2538250, -101530, 781, -1;
30517578125, -38144531250, 7944234375, -319819500, 2542155, -3906, 1;
476837158203125, -596038818359375, 124166806640625, -5005123921875, 40040991375, -63573405, 19531, -1;
-
A157832 := proc(n,k)
product( 5^(i-1)-x,i=1..n) ;
coeftayl(%,x=0,k) ;
end proc: # R. J. Mathar, Oct 15 2013
-
p[x_, n_] = If[n == 0, 1, Product[q^(i - 1) - x, {i, 1, n}]];
q = 5;
Table[CoefficientList[p[x, n], x], {n, 0, 10}];
Flatten[%]
A109493
a(n) = 7^((n^2 - n)/2).
Original entry on oeis.org
1, 1, 7, 343, 117649, 282475249, 4747561509943, 558545864083284007, 459986536544739960976801, 2651730845859653471779023381601, 107006904423598033356356300384937784807
Offset: 0
A109966
a(n) = 8^((n^2-n)/2).
Original entry on oeis.org
1, 1, 8, 512, 262144, 1073741824, 35184372088832, 9223372036854775808, 19342813113834066795298816, 324518553658426726783156020576256, 43556142965880123323311949751266331066368, 46768052394588893382517914646921056628989841375232, 401734511064747568885490523085290650630550748445698208825344
Offset: 0
A110147
10^((n^2-n)/2).
Original entry on oeis.org
1, 1, 10, 1000, 1000000, 10000000000, 1000000000000000, 1000000000000000000000, 10000000000000000000000000000, 1000000000000000000000000000000000000
Offset: 0
A269661
a(n) = Product_{i=1..n} (5^i - 4^i).
Original entry on oeis.org
1, 9, 549, 202581, 425622681, 4907003889249, 302963327126122509, 98490045052104040328301, 166544794872251942218390753281, 1451779137596368920662880897497387769, 64798450159010700654830227323217753649135349
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A263394 (j=3, k=2),
A269576 (j=4, k=3).
-
[&*[ 5^k-4^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
Table[Product[5^i - 4^i, {i, n}], {n, 15}] (* Vincenzo Librandi, Mar 03 2016 *)
Table[5^(Binomial[n + 1, 2]) *QPochhammer[4/5, 4/5, n], {n, 1, 20}] (* G. C. Greubel, Mar 05 2016 *)
FoldList[Times,Table[5^n-4^n,{n,15}]] (* Harvey P. Dale, Aug 28 2018 *)
-
a(n) = prod(k=1, n, 5^k-4^k); \\ Michel Marcus, Mar 05 2016
A110195
a(n) = 11^((n^2-n)/2).
Original entry on oeis.org
1, 1, 11, 1331, 1771561, 25937424601, 4177248169415651, 7400249944258160101211, 144209936106499234037676064081, 30912680532870672635673352936887453361, 72890483685103052142902866787761839379440139451, 1890591424712781041871514584574319778449301246603238034051
Offset: 0
Cf.
A001020,
A006125,
A047656,
A053763,
A053764,
A109345,
A109354,
A109493,
A109966,
A110147,
A161680.
-
Table[11^((n^2-n)/2),{n,0,20}] (* Harvey P. Dale, Feb 02 2012 *)
Join[{1,1},Table[Det[Table[Binomial[11i,j],{i,n},{j,n}]],{n,10}]] (* Harvey P. Dale, Apr 01 2019 *)
Showing 1-9 of 9 results.
Comments