cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109703 Number of partitions of n into parts each equal to 1 mod 7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 5, 6, 7, 7, 7, 7, 7, 8, 10, 11, 12, 12, 12, 12, 13, 15, 17, 18, 19, 19, 19, 20, 23, 26, 28, 29, 30, 30, 31, 34, 38, 41, 43, 44, 45, 46, 50, 55, 60, 63, 65, 66, 68, 72, 79, 85, 90, 93, 95, 97, 103, 111, 120, 127, 132, 135
Offset: 0

Views

Author

Erich Friedman, Aug 07 2005

Keywords

Examples

			a(15)=3 because we have 15=8+1+1+1+1+1+1+1=1+1+1+1+1+1+1+1+1+1+1+1+1+1+1.
		

Crossrefs

Cf. A284099.
Cf. similar sequences of number of partitions of n into parts congruent to 1 mod m: A000009 (m=2), A035382 (m=3), A035451 (m=4), A109697 (m=5), A109701 (m=6), this sequence (m=7), A277090 (m=8).

Programs

  • Maple
    g:=1/product(1-x^(1+7*j),j=0..20): gser:=series(g,x=0,80): seq(coeff(gser,x,n),n=0..77); # Emeric Deutsch, Apr 14 2006
  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(7*k+1)),{k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 27 2015 *)

Formula

G.f.: 1/product(1-x^(1+7j), j=0..infinity). - Emeric Deutsch, Apr 14 2006
a(n) ~ Gamma(1/7) * exp(Pi*sqrt(2*n/21)) / (2^(11/7) * 3^(1/14) * 7^(3/7) * Pi^(6/7) * n^(4/7)) * (1 - (2*sqrt(6/7)/(7*Pi) + 13*Pi/(168*sqrt(42))) / sqrt(n)). - Vaclav Kotesovec, Feb 27 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 20 2017
G.f.: Sum_{k>=0} x^k / Product_{j=1..k} (1 - x^(7*j)). - Ilya Gutkovskiy, Jul 17 2019

Extensions

Changed offset to 0 and added a(0)=1 by Vaclav Kotesovec, Feb 27 2015