A117631 a(1)=433640083; a(n+1)= the largest prime factor of a(n)+b(n)+c(n), where a(n)
433640083, 1300920277, 3902760919, 1300920311, 3902760991, 285567881, 19923341, 59770063, 432073, 432097, 259271, 777857, 2333579, 72173, 43321, 130043, 390151, 40361, 121171, 363541, 4211, 12647, 12653, 1151, 3467, 10427, 467
Offset: 1
Examples
a(1)=433640083 so b(1)=nextprime(433640083)=433640093 and c(1)=nextprime(433640093)=433640101 hence a(2) equals largest prime factor of 433640083+433640093+433640101. But 433640083+433640093+433640101=1300920277 is prime so a(2)= 1300920277.
Links
- Carlos Rivera, Puzzle 354.
Crossrefs
Cf. A109756.
Programs
-
Mathematica
np[n_]:=Module[{np1=NextPrime[n],np2},np2=NextPrime[np1];Max[Transpose[ FactorInteger[n+np1+np2]]]]; NestList[np,433640083,50] (* Harvey P. Dale, Sep 22 2011 *)
Formula
If k is a natural number then a(4k+31)=41; a(4k+32)=131; a(4k+33)=37 and a(4k+34)=11.
Comments