cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117631 a(1)=433640083; a(n+1)= the largest prime factor of a(n)+b(n)+c(n), where a(n)

Original entry on oeis.org

433640083, 1300920277, 3902760919, 1300920311, 3902760991, 285567881, 19923341, 59770063, 432073, 432097, 259271, 777857, 2333579, 72173, 43321, 130043, 390151, 40361, 121171, 363541, 4211, 12647, 12653, 1151, 3467, 10427, 467
Offset: 1

Views

Author

Enoch Haga and Farideh Firoozbakht, Apr 08 2006

Keywords

Comments

Note that before entering the cycle (41, 131, 37, 11) there are 34 terms of the sequence a(1),a(2),...,a(33)=53 and a(34)=173.

Examples

			a(1)=433640083 so b(1)=nextprime(433640083)=433640093 and c(1)=nextprime(433640093)=433640101 hence a(2) equals largest prime factor of 433640083+433640093+433640101.
But 433640083+433640093+433640101=1300920277 is prime so a(2)= 1300920277.
		

Crossrefs

Cf. A109756.

Programs

  • Mathematica
    np[n_]:=Module[{np1=NextPrime[n],np2},np2=NextPrime[np1];Max[Transpose[ FactorInteger[n+np1+np2]]]]; NestList[np,433640083,50] (* Harvey P. Dale, Sep 22 2011 *)

Formula

If k is a natural number then a(4k+31)=41; a(4k+32)=131; a(4k+33)=37 and a(4k+34)=11.

A117675 Numbers k such that prime(k) + prime(k+1) + prime(k+2) is prime and also there is a j such that prime(j) + prime(j+1) + prime(j+2) = prime(k).

Original entry on oeis.org

9, 11, 13, 20, 23, 29, 47, 64, 70, 88, 121, 126, 145, 148, 153, 174, 190, 195, 201, 213, 223, 245, 294, 298, 320, 337, 369, 381, 429, 436, 445, 462, 486, 495, 504, 536, 548, 584, 596, 608, 639, 677, 747, 819, 827, 831, 868, 877, 887, 902, 905, 970
Offset: 1

Views

Author

Roger L. Bagula, Apr 12 2006

Keywords

Crossrefs

Programs

  • PARI
    isok2(k)={my(q=prime(k), p=q\3); while(p>2, p=precprime(p-1); my(p2=nextprime(p+1), t=p+p2+nextprime(p2+1)); if(t<=q, return(t==q))); 0}
    isok(k)={my(p1=prime(k), p2=nextprime(p1+1), p3=nextprime(p2+1)); isprime(p1+p2+p3) && isok2(k)}
    select(isok, [1..1000]) \\ Andrew Howroyd, Jul 23 2024

Extensions

Edited and more terms from Andrew Howroyd, Jul 23 2024
Showing 1-2 of 2 results.