A109760 Composite n such that binomial(5*n,n) == 5^n (mod n).
4, 365, 400, 685, 3200, 6400, 12550, 12800, 16525, 25600, 51200, 225125, 70463125, 271094125, 431434441
Offset: 1
Examples
4 is a term because binomial(5*4, 4) = 4845, 5^4 = 625 and 4845 mod 4 = 625 mod 4 = 1.
Links
- Max Alekseyev, PARI/GP scripts for various problems
Crossrefs
Cf. A080469.
Programs
-
Mathematica
Do[If[ !PrimeQ[n], If[Mod[Binomial[5*n, n], n] == Mod[5^n, n], Print[n]]], {n, 1, 50000}] Select[Range[250000],CompositeQ[#]&&Mod[Binomial[5#,#],#]==PowerMod[5,#,#]&] (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Jul 28 2025 *)
Extensions
a(12) from D. S. McNeil, Mar 15 2009
225125 from Max Alekseyev, Sep 13 2009
Three more terms from Max Alekseyev, Nov 06 2009
Comments