cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109794 a(2n) = A001906(n+1), a(2n+1) = A002878(n).

Original entry on oeis.org

1, 1, 3, 4, 8, 11, 21, 29, 55, 76, 144, 199, 377, 521, 987, 1364, 2584, 3571, 6765, 9349, 17711, 24476, 46368, 64079, 121393, 167761, 317811, 439204, 832040, 1149851, 2178309, 3010349, 5702887, 7881196, 14930352, 20633239, 39088169
Offset: 0

Views

Author

Creighton Dement, Aug 14 2005

Keywords

Comments

Sequence relates bisections of Lucas and Fibonacci numbers (see also A098149).
Floretion Algebra Multiplication Program, FAMP code: 4jesleftforsumseq[ + .25'i + .25i' + .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' + .25e], vesleftforsumseq = A000045, sumtype: (Y[15], *, inty*sum) (internal program code)

Crossrefs

Programs

  • GAP
    a:=[1,1,3,4];; for n in [5..40] do a[n]:=3*a[n-2]-a[n-4]; od; a; # Muniru A Asiru, Aug 09 2018
  • Maple
    a:= n-> (<<0|1>, <-1|3>>^iquo(n, 2, 'r'). <<1, 3+r>>)[1, 1]:
    seq(a(n), n=0..50);  # Alois P. Heinz, May 02 2011
  • Mathematica
    LinearRecurrence[{0, 3, 0, -1}, {1, 1, 3, 4}, 40] (* Robert G. Wilson v, Aug 06 2018 *)
    CoefficientList[Series[(1+x+x^3)/((1+x-x^2)(1-x-x^2)),{x,0,40}],x] (* Harvey P. Dale, Aug 10 2021 *)

Formula

G.f.: (1+x+x^3)/((1+x-x^2)*(1-x-x^2)).
a(n) = ((3/20)*sqrt(5) + 3/4)*(1/2 + (1/2)*sqrt(5))^n + (-(3/20)*sqrt(5) + 3/4)*(1/2 - (1/2)*sqrt(5))^n + (-(3/20)*sqrt(5) - 1/4)*(-1/2 + (1/2)*sqrt(5))^n + ((3/20)*sqrt(5) - 1/4) *(-1/2 - (1/2)*sqrt(5))^n.
a(n) = 3*a(n-2) - a(n-4), n >= 4; a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 4. - Daniel Forgues, May 07 2011