cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A109925 Number of primes of the form n - 2^k.

Original entry on oeis.org

0, 0, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 0, 1, 2, 3, 1, 4, 0, 2, 1, 2, 0, 3, 0, 1, 1, 2, 1, 3, 1, 3, 0, 2, 1, 4, 0, 1, 1, 2, 1, 5, 0, 2, 1, 3, 0, 3, 0, 1, 1, 3, 0, 2, 0, 1, 1, 3, 1, 4, 0, 1, 1, 2, 1, 5, 0, 2, 1, 2, 1, 6, 0, 3, 0, 2, 1, 3, 0, 3, 1, 2, 0, 4, 0, 1, 1, 3, 0, 3, 0, 2, 0, 1, 1, 3, 0, 2, 1, 2, 1, 6
Offset: 1

Views

Author

Amarnath Murthy, Jul 17 2005

Keywords

Comments

Erdős conjectures that the numbers in A039669 are the only n for which n-2^r is prime for all 2^rT. D. Noe and Robert G. Wilson v, Jul 19 2005
a(A006285(n)) = 0. - Reinhard Zumkeller, May 27 2015

Examples

			a(21) = 4, 21-2 =19, 21-4 = 17, 21-8 = 13, 21-16 = 5, four primes.
127 is the smallest odd number > 1 such that a(n) = 0: A006285(2) = 127. - _Reinhard Zumkeller_, May 27 2015
		

Crossrefs

Programs

  • Haskell
    a109925 n = sum $ map (a010051' . (n -)) $ takeWhile (< n)  a000079_list
    -- Reinhard Zumkeller, May 27 2015
    
  • Magma
    a109925:=function(n); count:=0; e:=1; while e le n do if IsPrime(n-e) then count+:=1; end if; e*:=2; end while; return count; end function; [ a109925(n): n in [1..105] ]; // Klaus Brockhaus, Oct 30 2010
    
  • Maple
    A109925 := proc(n)
        a := 0 ;
        for k from 0 do
            if n-2^k < 2 then
                return a ;
            elif isprime(n-2^k) then
                a := a+1 ;
            end if;
        end do:
    end proc:
    seq(A109925(n),n=1..80) ; # R. J. Mathar, Mar 07 2022
  • Mathematica
    Table[cnt=0; r=1; While[rRobert G. Wilson v, Jul 21 2005 *)
    Table[Count[n - 2^Range[0, Floor[Log2[n]]], ?PrimeQ], {n, 110}] (* _Harvey P. Dale, Oct 21 2024 *)
  • PARI
    a(n)=sum(k=0,log(n)\log(2),isprime(n-2^k)) \\ Charles R Greathouse IV, Feb 19 2013
    
  • Python
    from sympy import isprime
    def A109925(n): return sum(1 for i in range(n.bit_length()) if isprime(n-(1<Chai Wah Wu, Nov 29 2023

Formula

a(A118954(n))=0, a(A118955(n))>0; A118952(n)<=a(n); A078687(n)=a(A000040(n)). - Reinhard Zumkeller, May 07 2006
G.f.: ( Sum_{i>=0} x^(2^i) ) * ( Sum_{j>=1} x^prime(j) ). - Ilya Gutkovskiy, Feb 10 2022

Extensions

Corrected and extended by T. D. Noe and Robert G. Wilson v, Jul 19 2005