cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A109962 Inverse of Riordan array (1/(1-x), x/(1-x)^4), A109960.

Original entry on oeis.org

1, -1, 1, 4, -5, 1, -22, 30, -9, 1, 140, -200, 72, -13, 1, -969, 1425, -570, 130, -17, 1, 7084, -10626, 4554, -1196, 204, -21, 1, -53820, 81900, -36855, 10647, -2142, 294, -25, 1, 420732, -647280, 302064, -93496, 21080, -3472, 400, -29, 1, -3362260, 5217300, -2504304, 816816, -200277, 37485, -5250, 522
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Riordan array (g,f) where f/(1-f)^4=x and g=1/(1-f). First column is (-1)^n*A002293(n). Diagonal sums are A109963.

Examples

			Triangle begins:
     1;
    -1,    1;
     4,   -5,    1;
   -22,   30,   -9,   1;
   140, -200,   72, -13,   1;
  -969, 1425, -570, 130, -17, 1;
  ...
		

Crossrefs

Formula

Number triangle T(n, k)=(-1)^(n-k)*((4k+1)/(3n+k+1))*binomial(4n, n-k).

A055988 Sequence is its own 4th difference.

Original entry on oeis.org

1, 2, 7, 26, 95, 345, 1252, 4544, 16493, 59864, 217286, 788674, 2862617, 10390321, 37713313, 136886433, 496850954, 1803399103, 6545722210, 23758733815, 86236081273, 313007493212, 1136110191472, 4123691589365, 14967590689568
Offset: 1

Views

Author

Henry Bottomley, Jun 02 2000

Keywords

Comments

Row sums of Riordan array (1/(1-x), x/(1-x)^4), A109960. - Paul Barry, Jul 06 2005

Crossrefs

Cf. A055989, A055990, A055991 for the other differences of a(n). See A000079, A001906, A052529 for examples of sequences which are respectively their own first, second and third differences.

Programs

  • Magma
    I:=[1, 2, 7, 26]; [n le 4 select I[n] else 5*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 05 2012
  • Mathematica
    CoefficientList[Series[(1-x)^3/(1-5x+6x^2-4x^3+x^4),{x,0,40}],x] (* Vincenzo Librandi, Apr 05 2012 *)
    LinearRecurrence[{5,-6,4,-1},{1,2,7,26},30] (* Harvey P. Dale, Jan 15 2017 *)

Formula

a(n) = 5a(n-1) - 6a(n-2) + 4a(n-3) - a(n-4) = a(n-1) + A055991(n-1) = A055989(n) - A055989(n-1) = A055990(n) - 2*A055990(n-1) + A055990(n-2).
From Paul Barry, Jul 06 2005: (Start)
G.f.: (1-x)^3/(1 - 5x + 6x^2 - 4x^3 + x^4);
a(n) = Sum_{k=0..n} binomial(n+3k, 4k). (End)

Extensions

More terms from James Sellers, Jun 05 2000

A109961 Expansion of (1-x)^3/(1-4x+5x^2-4x^3+x^4).

Original entry on oeis.org

1, 1, 2, 6, 17, 45, 117, 305, 798, 2090, 5473, 14329, 37513, 98209, 257114, 673134, 1762289, 4613733, 12078909, 31622993, 82790070, 216747218, 567451585, 1485607537, 3889371025, 10182505537, 26658145586, 69791931222, 182717648081
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Diagonal sums of number triangle A109960.

Programs

  • Mathematica
    CoefficientList[Series[(1-3x+3x^2-x^3)/(1-4x+5x^2-4x^3+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{4,-5,4,-1},{1,1,2,6},40] (* Harvey P. Dale, Dec 11 2013 *)

Formula

a(n)=sum{k=0..floor(n/2), binomial(n+2k, 4k)}.
a(0)=1, a(1)=1, a(2)=2, a(3)=6, a(n)=4*a(n-1)-5*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Dec 11 2013

A236579 The number of tilings of a 5 X (4n) floor with 1 X 4 tetrominoes.

Original entry on oeis.org

1, 3, 15, 75, 371, 1833, 9057, 44753, 221137, 1092699, 5399327, 26679563, 131831075, 651413681, 3218814561, 15905050017, 78591236385, 388340962771, 1918899743823, 9481812581835, 46852249642771
Offset: 0

Views

Author

R. J. Mathar, Jan 29 2014

Keywords

Comments

Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
Related to A002378 by an Invert Transform.

Crossrefs

Cf. A003269 (4Xn floor), A236580 - A236582, A109960.

Programs

  • Maple
    g := (1-x)^3/(-6*x+1+6*x^2-4*x^3+x^4) ;
    taylor(%,x=0,30) ; gfun[seriestolist](%) ;
    # Alternatively:
    a := n -> hypergeom([(n+1)/3, (n+2)/3, n/3 + 1, -n], [1/4, 1/2, 3/4], -27/128):
    seq(simplify(a(n)), n=0..20); # Peter Luschny, Nov 02 2017
  • Mathematica
    LinearRecurrence[{6, -6, 4, -1}, {1, 3, 15, 75}, 21] (* Jean-François Alcover, Jul 14 2018 *)

Formula

G.f.: (1-x)^3/(-6*x+1+6*x^2-4*x^3+x^4).
a(n) = Sum_{k = 0..n} binomial(n + 3*k, 4*k)*2^k = Sum_{k = 0..n} A109960(n,k)*2^k. - Peter Bala, Nov 02 2017
a(n) = hypergeom([(n+1)/3, (n+2)/3, n/3 + 1, -n], [1/4, 1/2, 3/4], -27/128). - Peter Luschny, Nov 02 2017
Showing 1-4 of 4 results.