cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110004 n followed by n^3 followed by n^4 followed by n^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 8, 16, 4, 3, 27, 81, 9, 4, 64, 256, 16, 5, 125, 625, 25, 6, 216, 1296, 36, 7, 343, 2401, 49, 8, 512, 4096, 64, 9, 729, 6561, 81, 10, 1000, 10000, 100, 11, 1331, 14641, 121, 12, 1728, 20736, 144, 13, 2197, 28561, 169, 14, 2744, 38416, 196, 15
Offset: 1

Views

Author

Mohammad K. Azarian, Sep 02 2005

Keywords

Crossrefs

Programs

  • Magma
    [&cat[[n,n^3,n^4,n^2]: n in [1..20]]]; // Vincenzo Librandi, Sep 05 2016
  • Mathematica
    Table[n^{1, 3, 4, 2}, {n, 15}] // Flatten (* or *)
    Table[(2 n + 3 - (-1)^n + 2 (-1)^((2 n + 5 - (-1)^n)/4)) (n^3 + 7 n^2 + 35 n + 81 - (n^3 - n^2 - 29 n + 49) (-1)^n - (n^3 - n^2 + 3 n - 79) (-1)^((2 n + 5 - (-1)^n)/4) - (n^3 + 7 n^2 + 3 n - 47) (-1)^((2 n + 7 + (-1)^n)/4))/2048, {n, 57}] (* Michael De Vlieger, Sep 03 2016 *)
    LinearRecurrence[{0,0,0,5,0,0,0,-10,0,0,0,10,0,0,0,-5,0,0,0,1},{1,1,1,1,2,8,16,4,3,27,81,9,4,64,256,16,5,125,625,25},60] (* Harvey P. Dale, Jul 19 2024 *)

Formula

a(n) = (2*n+3-(-1)^n+2*(-1)^((2*n+5-(-1)^n)/4))*(n^3+7*n^2+35*n+81-(n^3-n^2-29*n+49)*(-1)^n-(n^3-n^2+3*n-79)*(-1)^((2*n+5-(-1)^n)/4)-(n^3+7*n^2+3*n-47)*(-1)^((2*n+7+(-1)^n)/4))/2048. - Luce ETIENNE, Sep 03 2016
From Chai Wah Wu, Jan 11 2020: (Start)
a(n) = 5*a(n-4) - 10*a(n-8) + 10*a(n-12) - 5*a(n-16) + a(n-20) for n > 20.
G.f.: x*(-x^15 - x^14 + x^13 + x^12 + x^11 - 11*x^10 + 3*x^9 - 3*x^8 + x^7 - 11*x^6 - 3*x^5 + 3*x^4 - x^3 - x^2 - x - 1)/((x - 1)^5*(x + 1)^5*(x^2 + 1)^5). (End)