A110045 Number of hierarchical orderings ("societies") of n unlabeled elements ("individuals") with at least two occupied levels.
1, 0, 1, 3, 8, 18, 45, 102, 245, 565, 1324, 3049, 7066, 16199, 37187, 84887, 193532, 439600, 996818, 2253941, 5086980, 11454778, 25746467, 57756522, 129342179, 289153474, 645399011, 1438308839, 3200671082, 7112360474, 15783402471, 34980122720, 77428353682
Offset: 0
Keywords
Examples
Let * denote an unlabeled element. Let : denote a delimiter between two levels of a hierarchy. Let | denote a delimiter between two subhierarchies. a(4) = 8 because we have *:*:*:*, ***:*, **:*:*, *:*|*:*, *:***, **:**, *:**:*, *:*:**.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
Programs
-
Maple
SetSeqXSetU := [S, {S=Set(U), U=Sequence(V,card>=2),V=Set(Z,card>=1)},unlabeled]; seq(count(SetSeqXSetU,size=j),j=0..30); #where x is an integer 1, 2, 3,... # x=2 gives 2 levels per society.
-
Mathematica
nmax = 40; CoefficientList[Series[E^Sum[x^(2*k)/(k*(1 - x^k)*(1 - 2*x^k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 08 2018 *)
Formula
G.f.: Product_{k>=1} 1/(1 - x^k)^(2^(k-1)-1). - Ilya Gutkovskiy, Jun 07 2018
a(n) ~ 2^n * exp(sqrt(2*n) - 5/4 + c) / (sqrt(2*Pi) * 2^(3/4) * n^(3/4)), where c = Sum_{k>=2} 1/(k*(2^k-1)*(2^k-2)) = 0.0927294481510243482503144824759369647388... - Vaclav Kotesovec, Jun 08 2018
Comments