cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A051612 a(n) = sigma(n) - phi(n).

Original entry on oeis.org

0, 2, 2, 5, 2, 10, 2, 11, 7, 14, 2, 24, 2, 18, 16, 23, 2, 33, 2, 34, 20, 26, 2, 52, 11, 30, 22, 44, 2, 64, 2, 47, 28, 38, 24, 79, 2, 42, 32, 74, 2, 84, 2, 64, 54, 50, 2, 108, 15, 73, 40, 74, 2, 102, 32, 96, 44, 62, 2, 152, 2, 66, 68, 95, 36, 124, 2, 94, 52, 120, 2, 171, 2, 78
Offset: 1

Views

Author

Keywords

Examples

			a(4) = sigma(4) - phi(4) = 7-2 = 5.
		

Crossrefs

Cf. A240960, A292769 (partial sums).

Programs

Formula

a(n) = A000203(n)-A000010(n).
a(n) > 1 for n > 1; a(n) = 2 if and only if n is prime. - Charles R Greathouse IV, May 09 2013
G.f.: Sum_{k>=1} (1 - mu(k))*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Sep 29 2017

A110088 a(n) = tau(n)^omega(n), where tau = A000005 and omega = A001221.

Original entry on oeis.org

1, 2, 2, 3, 2, 16, 2, 4, 3, 16, 2, 36, 2, 16, 16, 5, 2, 36, 2, 36, 16, 16, 2, 64, 3, 16, 4, 36, 2, 512, 2, 6, 16, 16, 16, 81, 2, 16, 16, 64, 2, 512, 2, 36, 36, 16, 2, 100, 3, 36, 16, 36, 2, 64, 16, 64, 16, 16, 2, 1728, 2, 16, 36, 7, 16, 512, 2, 36, 16, 512, 2, 144, 2, 16, 36, 36, 16
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 11 2005

Keywords

Comments

a(n) depends only on the prime signature of n.

Crossrefs

Programs

  • Haskell
    a110088 n = a000005 n ^ a001221 n  -- Reinhard Zumkeller, Aug 05 2014
    
  • Mathematica
    a[n_] := DivisorSigma[0, n]^PrimeNu[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); numdiv(f)^omega(f);} \\ Amiram Eldar, Sep 15 2024

Formula

a(n) = A000005(n)^A001221(n).

A110085 Numbers k such that sigma(k) - phi(k) < tau(k)^omega(k), where sigma = A000203, phi = A000010, tau = A000005 and omega = A001221.

Original entry on oeis.org

1, 6, 10, 12, 18, 20, 24, 30, 36, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 210, 220, 222, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 11 2005

Keywords

Crossrefs

Programs

  • Haskell
    a110085 n = a110085_list !! (n-1)
    a110085_list = filter (\x -> a051612 x < a110088 x) [1..]
    -- Reinhard Zumkeller, Aug 05 2014
  • Mathematica
    q[k_] := DivisorSigma[1, k] - EulerPhi[k] < DivisorSigma[0, k]^PrimeNu[k]; Select[Range[300], q] (* Amiram Eldar, Sep 15 2024 *)
  • PARI
    is(n)=sigma(n)-eulerphi(n)Charles R Greathouse IV, Feb 14 2013
    

Formula

A051612(a(n)) < A110088(a(n)).

A110087 Numbers k such that sigma(k) - phi(k) > tau(k)^omega(k), where sigma = A000203, phi = A000010, tau = A000005 and omega = A001221.

Original entry on oeis.org

4, 8, 9, 14, 16, 21, 22, 25, 26, 27, 28, 32, 33, 34, 35, 38, 39, 40, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 64, 65, 68, 69, 72, 74, 75, 76, 77, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 104, 106, 108, 111, 112, 115, 116, 117, 118
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 11 2005

Keywords

Crossrefs

Programs

  • Haskell
    a110087 n = a110087_list !! (n-1)
    a110087_list = filter (\x -> a051612 x > a110088 x) [1..]
    -- Reinhard Zumkeller, Aug 05 2014
  • Mathematica
    q[k_] := DivisorSigma[1, k] - EulerPhi[k] > DivisorSigma[0, k]^PrimeNu[k]; Select[Range[120], q] (* Amiram Eldar, Sep 15 2024 *)
  • PARI
    is(n)=sigma(n)-eulerphi(n)>numdiv(n)^omega(n) \\ Charles R Greathouse IV, Feb 19 2013
    

Formula

A051612(a(n)) > A110088(a(n)).

A240960 Numbers m such that sigma(m) - phi(m) = tau(m)^omega(m), where sigma=A000203, phi=A000010, tau=A000005 and omega=A001221.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 05 2014

Keywords

Comments

a(n) = A182140(n) for n <= 35.
All primes p are in the sequence since (p+1) - (p-1) = 2^1. The first composites are 15, 119748396, 139254850, 187768485, 1420027536, 3991789984. A182140 seems unrelated. - Jens Kruse Andersen, Aug 05 2014

Crossrefs

Programs

  • Haskell
    a240960 n = a240960_list !! (n-1)
    a240960_list = filter (\x -> a051612 x == a110088 x) [1..]
    
  • Maple
    with(numtheory):
    filter:= n -> sigma(n) - phi(n) = tau(n)^nops(factorset(n)):
    select(filter, [$1..1000]); # Robert Israel, Aug 05 2014
  • Mathematica
    Select[Range[300], DivisorSigma[1, #] - EulerPhi[#] == DivisorSigma[0, #]^PrimeNu[#]&] (* Jean-François Alcover, Mar 08 2019 *)
  • PARI
    is(n)=my(f=factor(n)); sigma(f)-eulerphi(f)==numdiv(f)^omega(f) \\ Charles R Greathouse IV, Nov 26 2014
  • Python
    from sympy import totient,divisors,divisor_count,primefactors
    filter(lambda x:sum(divisors(x))-totient(x)==divisor_count(x)**len(primefactors(x)), range(1,10**5)) # Chai Wah Wu, Aug 05 2014
    

A353276 a(n) = phi(n) + tau(n)^omega(n) - sigma(n).

Original entry on oeis.org

1, 0, 0, -2, 0, 6, 0, -7, -4, 2, 0, 12, 0, -2, 0, -18, 0, 3, 0, 2, -4, -10, 0, 12, -8, -14, -18, -8, 0, 448, 0, -41, -12, -22, -8, 2, 0, -26, -16, -10, 0, 428, 0, -28, -18, -34, 0, -8, -12, -37, -24, -38, 0, -38, -16, -32, -28, -46, 0, 1576, 0, -50, -32, -88, -20, 388, 0, -58, -36, 392, 0, -27, 0, -62, -48, -68, -20, 368
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Crossrefs

Cf. A110087 (positions of negative terms), A110086 (of terms >= 0), A110085 (of terms > 0).

Programs

  • Mathematica
    Array[#1 + #3^#2 - #4 & @@ Flatten@ {EulerPhi[#], PrimeNu[#], DivisorSigma[{0, 1}, #]} &, 78] (* Michael De Vlieger, Apr 27 2022 *)
  • PARI
    A353276(n) = (eulerphi(n) + (numdiv(n)^omega(n)) - sigma(n));

Formula

a(n) = A110088(n) - A051612(n) = A000010(n) + A000005(n)^A001221(n) - A000203(n).
a(p) = 0 for all primes p.
Showing 1-6 of 6 results.