cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110090 Numerators of sequence of rationals defined by r(n) = n for n<=1 and for n>1: r(n) = (sum of denominators of r(n-1) and r(n-2))/(sum of numerators of r(n-1) and r(n-2)).

Original entry on oeis.org

0, 1, 2, 2, 1, 4, 4, 1, 6, 6, 1, 8, 8, 1, 10, 10, 1, 12, 12, 1, 14, 14, 1, 16, 16, 1, 18, 18, 1, 20, 20, 1, 22, 22, 1, 24, 24, 1, 26, 26, 1, 28, 28, 1, 30, 30, 1, 32, 32, 1, 34, 34, 1, 36, 36, 1, 38, 38, 1, 40, 40, 1, 42, 42, 1, 44, 44, 1, 46, 46, 1, 48, 48, 1, 50, 50, 1, 52, 52, 1, 54, 54
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 14 2005

Keywords

Comments

r(n) = a(n) / A110091(n);
a(n) = (A110091(n-1) + A110091(n-2))/GCD(a(n-1) + a(n-2), A110091(n-1) + A110091(n-2)).
r --> 1.

Examples

			First terms of r: 0 1 2 2/3 1 4/3 4/5 1 6/5 6/7 1 8/7 ...:
r(2) = (1+1)/(1+0) = 2,   r(3) = (1+1)/(2+1) = 2/3, r(4) = (3+1)/(2+2) = 1,
r(5) = (1+3)/(1+2) = 4/3, r(6) = (3+1)/(4+1) = 4/5, ...
		

Crossrefs

Cf. A110091 (denominators).

Programs

  • Magma
    I:=[0,1,2,2,1,4,4,1]; [n le 8 select I[n] else 2*Self(n-3)-Self(n-6): n in [1..100]]; // Vincenzo Librandi, Sep 27 2017
    
  • Mathematica
    Join[{0,1}, LinearRecurrence[{0,0,2,0,0,-1}, {2,2,1,4,4,1}, 100]] (* or *) CoefficientList[Series[x*(1+2*x+2*x^2-x^3)/((1-x)^2*(1+x+x^2)^2), {x,0,100}], x] (* Vincenzo Librandi, Sep 27 2017 *)
  • Sage
    def A110090_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+2*x+2*x^2-x^3)/(1-x^3)^2 ).list()
    A110090_list(100) # G. C. Greubel, Jun 16 2021

Formula

a(3*k) = 2*k, a(3*k+1) = 1, a(3*k+2) = 2*(k+1).
a(n) = (1/9)*(4*n + 5 + (4*n-4)*cos((2*n+1)*Pi/3) + sqrt(3)*sin(2*(n-1)*Pi/3) - sqrt(3)*sin(4*(n-1)*Pi/3)). - Wesley Ivan Hurt, Sep 25 2017
From Vincenzo Librandi, Sep 27 2017: (Start)
G.f.: x*(1 +2*x +2*x^2 -x^3)/((1-x)^2*(1+x+x^2)^2).
a(n) = 2*a(n-3) - a(n-6) for n>8. (End)