A110096 Least positive integer which, when added to each of 2^1, ..., 2^n, yields all primes; or 0 if none exists.
1, 1, 3, 3, 15, 15, 1605, 1605, 19425, 2397347205, 153535525935, 29503289812425, 29503289812425, 32467505340816975, 143924005810811655, 143924005810811655
Offset: 1
Examples
a(5)=15 is the least positive integer which, when added to 2^1, 2^2, 2^3, 2^4, 2^5, yields all primes: 17, 19, 23, 31, 47.
Crossrefs
Cf. A193109.
Programs
-
Mathematica
p[n_] := Table[2^i, {i, 1, n}]; f[k_, n_] := MemberQ[PrimeQ[k + p[n]], False]; r = {}; For[n = 1, n <= 9, n++, k = 1; While[f[k, n], k = k + 1]; r = Append[r, k]]; r
-
PARI
is(k, n) = for(i=1, n, if(!isprime(k+2^i), return(0))); 1; a(n) = {my(s=2); forprime(p=3, n, if(znorder(Mod(2, p))==(p-1), s*=p)); forstep(k=s/2, oo, s, if(is(k, n), return(k))); } \\ Jinyuan Wang, Jul 30 2020
Extensions
a(10) from T. D. Noe, Sep 06 2005
a(11) from Don Reble, Sep 17 2005
a(14)-a(16) from Bert Dobbelaere, Apr 24 2021
Comments