cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110170 First differences of the central Delannoy numbers (A001850).

Original entry on oeis.org

1, 2, 10, 50, 258, 1362, 7306, 39650, 217090, 1196834, 6634890, 36949266, 206549250, 1158337650, 6513914634, 36718533570, 207412854786, 1173779487810, 6653482333450, 37770112857074, 214694383882498, 1221832400430482, 6961037946938250, 39697830840765090, 226596964146630658
Offset: 0

Views

Author

Emeric Deutsch, Jul 14 2005

Keywords

Comments

Number of Delannoy paths of length n that do not start with a (1, 1) step (a Delannoy path of length n is a path from (0, 0) to (n, n), consisting of steps E = (1, 0), N = (0, 1) and D = (1, 1)). Example: a(1) = 2 because we have NE and EN. Column 0 of A110169 (also nonzero entries in each column of A110169).
For n > 0: a(n) = A128966(2*n,n). - Reinhard Zumkeller, Jul 20 2013

Crossrefs

Programs

  • Haskell
    a110170 0 = 1
    a110170 n = a128966 (2 * n) n  -- Reinhard Zumkeller, Jul 20 2013
  • Maple
    with(orthopoly): a:=proc(n) if n=0 then 1 else P(n,3)-P(n-1,3) fi end: seq(a(n),n=0..25);
    a := n -> `if`(n=0, 1, 2*hypergeom([1 - n, -n], [1], 2)):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, May 22 2017
  • Mathematica
    CoefficientList[Series[(1 - x)/Sqrt[1 - 6 * x + x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
  • PARI
    x='x+O('x^66); Vec((1-x)/sqrt(1-6*x+x^2)) \\ Joerg Arndt, May 16 2013
    

Formula

G.f.: (1-z)/sqrt(1-6*z+z^2).
a(n) = P_n(3) - P_{n-1}(3) (n >= 1), where P_j is j-th Legendre polynomial.
From Paul Barry, Oct 18 2009: (Start)
G.f.: (1-x)/(1-x-2x/(1-x-x/(1-x-x/(1-x-x/(1-... (continued fraction);
G.f.: 1/(1-2x/((1-x)^2-x/(1-x/((1-x)^2-x/(1-x/((1-x)^2-x/(1-... (continued fraction);
a(n) = Sum_{k = 0..n} (0^(n + k) + C(n + k - 1, 2k - 1)) * C(2k, k) = 0^n + Sum_{k = 0..n} C(n + k - 1, 2k - 1) * C(2k, k). (End)
D-finite with recurrence: n*(2*n-3)*a(n) = 2*(6*n^2-12*n+5)*a(n-1) - (n-2)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 2^(-1/4)*(3+2*sqrt(2))^n/sqrt(Pi*n). - Vaclav Kotesovec, Oct 18 2012
a(n) = A277919(2n,n). - John P. McSorley, Nov 23 2016
a(n) = 2*hypergeom([1 - n, -n], [1], 2) for n>0. - Peter Luschny, May 22 2017
D-finite with recurrence: n*a(n) +(-7*n+5)*a(n-1) +(7*n-16)*a(n-2) +(-n+3)*a(n-3)=0. - R. J. Mathar, Jan 15 2020
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n^2-k^2) * a(k). - Seiichi Manyama, Mar 28 2023
G.f.: Sum_{n >= 0} binomial(2*n, n)*x^n/(1 - x)^(2*n) = 1 + 2*x + 10*x^2 + 50*x^3 + .... - Peter Bala, Apr 17 2024