cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110185 Coefficients of x in the partial quotients of the continued fraction expansion exp(1/x) = [1, x - 1/2, 12*x, 5*x, 28*x, 9*x, 44*x, 13*x, ...]. The partial quotients all have the form a(n)*x except the constant term of 1 and the initial partial quotient which equals (x - 1/2).

Original entry on oeis.org

0, 1, 12, 5, 28, 9, 44, 13, 60, 17, 76, 21, 92, 25, 108, 29, 124, 33, 140, 37, 156, 41, 172, 45, 188, 49, 204, 53, 220, 57, 236, 61, 252, 65, 268, 69, 284, 73, 300, 77, 316, 81, 332, 85, 348, 89, 364, 93, 380, 97, 396, 101, 412, 105, 428, 109, 444, 113, 460, 117, 476
Offset: 0

Views

Author

Paul D. Hanna, Jul 14 2005

Keywords

Comments

Simple continued fraction expansion of 2*(e - 1)/(e + 1) = 2*tanh(1/2) = 1/(1 + 1/(12 + 1/(5 + 1/(28 + ...)))). - Peter Bala, Oct 01 2023

Crossrefs

Cf. continued fraction expansions: A004273 ( tanh(1) ), A204877 ( 3*tanh(1/3) ), A130824 ( tanh(1/2) ).

Programs

  • PARI
    a(n)=polcoeff(x*(1+12*x+3*x^2+4*x^3)/(1-x^2)^2+x*O(x^n),n)

Formula

G.f.: x*((1+3*x^2) + 4*x*(3+x^2))/(1-x^2)^2 = sum_{n>=0} a(n)*x^n.
From Carl R. White, Feb 11 2010: (Start)
a(n) = sign(n) * (2*n+1) * (3*cos(Pi*n)+5)/2.
a(2n+1) = a(2n-1) + 4, a(2n+2) = a(2n) + 16, with a(0)=0, a(1)=1, a(2)=12. (End)
a(n) = (5+3*(-1)^n)*(2*n-1)/2, with a(0)=0. Sum_{i=0..n} a(i) = A085787(A042948(n)). - Bruno Berselli, Jan 20 2012