cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A038048 a(n) = (n-1)! * sigma(n).

Original entry on oeis.org

1, 3, 8, 42, 144, 1440, 5760, 75600, 524160, 6531840, 43545600, 1117670400, 6706022400, 149448499200, 2092278988800, 40537905408000, 376610217984000, 13871809695744000, 128047474114560000, 5109094217170944000
Offset: 1

Views

Author

Keywords

Comments

sigma(n) = A000203(n) is the sum of the divisors of n.
Number of labeled regular octopi (or octopuses, cycles of ordered sets all the same size).
Left edge of triangle in A008298.

Examples

			a(6) = 5! * (1 + 2 + 3 + 6) = 1440 = 6! * (1 + 1/2 + 1/3 + 1/6).
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 56 (1.4.67).
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 159, #10, A(n,1).

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} n!/d. - Amarnath Murthy, Jul 24 2005
a(p) = (p+1)*(p-1)! if p is a prime. - Amarnath Murthy, Jul 24 2005
E.g.f.: log(f(x)), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1 - x^k). - N. J. A. Sloane
E.g.f.: Sum_{k>0} x^k/(k*(1-x^k)). - Vladeta Jovovic, Mar 27 2005
a(n) = A000142(n-1)*A000203(n). - Omar E. Pol, Feb 26 2014

Extensions

More terms from Emeric Deutsch, Jul 24 2005
Edited by N. J. A. Sloane, May 12 2008 at the suggestion of Joerg Arndt

A110374 a(n) = Sum_{composite c <= n} n!/c.

Original entry on oeis.org

6, 30, 300, 2100, 21840, 236880, 2731680, 30048480, 400498560, 5206481280, 79117758720, 1273944672000, 21690789120000, 368743415040000, 6993068898816000, 132868309077504000, 2779011281958912000, 60792138929313792000, 1388517998616612864000
Offset: 4

Views

Author

Amarnath Murthy, Jul 24 2005

Keywords

Examples

			a(8) = 8! * (1/4 + 1/6 + 1/8) = 21840.
		

Crossrefs

Cf. A110373.

Programs

  • Maple
    a:=proc(n) local s,i :s:=0: for i from 4 to n do if isprime(i)=false then s:=s+1/i else s:=s: fi od: n!*s; end; seq(a(n),n=4..23); # Emeric Deutsch, Jul 24 2005
  • Python
    from sympy import factorial, isprime, Rational
    def a(n): return factorial(n) * sum(Rational(1, c) for c in range(4, n+1) if not isprime(c))
    print([a(n) for n in range(4, 23)]) # Michael S. Branicky, Jun 30 2021

Extensions

More terms from Emeric Deutsch, Jul 24 2005
a(21) and beyond from Michael S. Branicky, Jun 30 2021

A110376 a(n) = Sum_{r < n, gcd(r,n)=1} n!/r.

Original entry on oeis.org

1, 2, 9, 32, 250, 864, 12348, 67584, 804816, 5760000, 116915040, 686776320, 19323757440, 157991178240, 2951575200000, 42301705420800, 1202482800691200, 10048607738265600, 425162773111910400, 4541227794432000000
Offset: 1

Views

Author

Amarnath Murthy, Jul 24 2005

Keywords

Examples

			a(6) = 6!(1/1 + 1/5) = 864.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local s,r: s:=0: for r from 1 to n do if gcd(r,n)=1 then s:=s+1/r else s:=s: fi: od: n!*s end: seq(a(n),n=1..23); # Emeric Deutsch, Jul 25 2005
  • Mathematica
    Do[Print[n! * Plus @@ Map[(1/#)&, Select[Range[n], GCD[ #, n] == 1 &]]], {n, 1, 30}] (* Ryan Propper, Jul 25 2005 *)

Extensions

More terms from Emeric Deutsch, Ryan Propper and Reinhard Zumkeller, Jul 25 2005

A110377 a(n) = Sum_{r < n, gcd(r,n)=1} n!/r!.

Original entry on oeis.org

1, 2, 9, 28, 205, 726, 8659, 47384, 562545, 4234330, 68588311, 483088332, 10699776685, 102434734598, 2016289908585, 24588487650736, 611171244308689, 6456997293606738, 209020565553571999, 2838875160624256460
Offset: 1

Views

Author

Amarnath Murthy, Jul 24 2005

Keywords

Examples

			a(6) = 6!(1/1! + 1/5!) = 726.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local s,r: s:=0: for r from 1 to n do if gcd(r,n)=1 then s:=s+1/r! else s:=s: fi: od: n!*s end: seq(a(n),n=1..23); # Emeric Deutsch, Jul 25 2005

Extensions

More terms from Emeric Deutsch, Jul 25 2005

A110378 a(n) = Sum_{prime p <= n} n!/p!.

Original entry on oeis.org

1, 4, 16, 81, 486, 3403, 27224, 245016, 2450160, 26951761, 323421132, 4204474717, 58862646038, 882939690570, 14127035049120, 240159595835041, 4322872725030738, 82134581775584023, 1642691635511680460
Offset: 2

Views

Author

Amarnath Murthy, Jul 24 2005

Keywords

Examples

			a(6) = 6!(2! + 1/3! + 1/5!) = 486.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local s, i: s:=0: for i from 2 to n do if isprime(i)=true then s:=s+1/i! else s:=s: fi: od: n!*s: end: seq(a(n),n=2..23); # Emeric Deutsch, Jul 24 2005

Extensions

Corrected and extended by Emeric Deutsch, Jul 24 2005

A110379 a(n) = Sum_{composite c <= n} n!/c!.

Original entry on oeis.org

1, 5, 31, 217, 1737, 15634, 156341, 1719751, 20637013, 268281169, 3755936367, 56339045506, 901424728097, 15324220377649, 275835966797683, 5240883369155977, 104817667383119541, 2201171015045510362
Offset: 4

Views

Author

Amarnath Murthy, Jul 24 2005

Keywords

Examples

			a(6) = 6!(1/4! + 1/6!) = 31.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local s,i :s:=0: for i from 4 to n do if isprime(i)=false then s:=s+1/i! else s:=s: fi od: n!*s; end; seq(a(n),n=4..24); # Emeric Deutsch, Jul 25 2005

Extensions

More terms from Emeric Deutsch, Jul 25 2005
Showing 1-6 of 6 results.