cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110391 a(n) = L(3*n)/L(n), where L(n) = Lucas number.

Original entry on oeis.org

1, 4, 6, 19, 46, 124, 321, 844, 2206, 5779, 15126, 39604, 103681, 271444, 710646, 1860499, 4870846, 12752044, 33385281, 87403804, 228826126, 599074579, 1568397606, 4106118244, 10749957121, 28143753124, 73681302246, 192900153619, 505019158606, 1322157322204
Offset: 0

Views

Author

Amarnath Murthy, Jul 27 2005

Keywords

Comments

Subsidiary sequences: a(n) = L((2k+1)*n)/L(n) for k = 2,3, etc. This is the sequence for k = 1.

Examples

			a(1) = L(3)/L(1) = 4/1 = 4.
		

Crossrefs

Programs

  • Magma
    [Lucas(3*n)/Lucas(n): n in [0..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    with(combinat): L:=n->fibonacci(n+2)-fibonacci(n-2): seq(L(3*n)/L(n),n=0..30); # Emeric Deutsch, Jul 31 2005
  • Mathematica
    Table[LucasL[3 n]/LucasL[n], {n, 0, 27}] (* Michael De Vlieger, Mar 18 2015 *)
    LinearRecurrence[{2,2,-1},{1,4,6},40] (* Harvey P. Dale, Aug 20 2020 *)
  • PARI
    Vec((1+2*x-4*x^2)/((1+x)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Jun 03 2016
    
  • PARI
    for(n=0,30, print1((fibonacci(3*n+1) + fibonacci(3*n-1))/( fibonacci(n+1) + fibonacci(n-1)), ", ")) \\ G. C. Greubel, Dec 17 2017

Formula

From R. J. Mathar, Oct 18 2010: (Start)
a(n) = A005248(n) - (-1)^n.
a(n) = +2*a(n-1) +2*a(n-2) -a(n-3).
G.f.: ( 1+2*x-4*x^2 ) / ( (1+x)*(x^2-3*x+1) ). (End)
Exp( Sum_{n >= 1} a(n)*t^n/n ) = 1 + 4*t + 11*t^2 + 29*t^3 + ... is the o.g.f. for A002878. This is the case x = 1 of the general result exp( Sum_{n >= 1} L(3*n,x)/L(n,x)*t^n/n ) = Sum_{n >= 0} L(2*n + 1,x)*t^n, where L(n,x) is the n-th Lucas polynomial of A114525. - Peter Bala, Mar 18 2015
a(n) = 2^(-n)*(-(-2)^n+(3-sqrt(5))^n+(3+sqrt(5))^n). - Colin Barker, Jun 03 2016

Extensions

Corrected and extended by Emeric Deutsch and Erich Friedman, Jul 31 2005