A110561 Denominators of T(n+1)/n! reduced to lowest terms, where T(n) are the triangular numbers A000217.
1, 1, 1, 3, 8, 40, 180, 140, 896, 72576, 604800, 6652800, 68428800, 59304960, 726485760, 163459296000, 2324754432000, 39520825344000, 640237370572800, 579262382899200, 10532043325440000, 4644631106519040000
Offset: 0
Examples
a(3) = 3 because T(3+1)/3! = T(4)/3! = (4*5/2)/(1*2*3) = 10/6 = 5/3 so the fraction has denominator 3 and numerator A110560(3) = 5. Furthermore, the 3rd term of the exponential generating function of the triangular numbers is (5/3)*x^3.
References
- Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995, p. 9.
Links
- Eric Weisstein's World of Mathematics, Triangular Number.
Programs
-
Mathematica
T[n_] := n*(n + 1)/2; Table[Denominator[T[n + 1]/n! ], {n, 0, 21}] With[{nn=30},Denominator[Accumulate[Range[nn]]/Range[0,nn-1]!]] (* Harvey P. Dale, Aug 15 2014 *)
Formula
Extensions
Extended by Ray Chandler, Jul 27 2005
Comments