A110560 Numerators of T(n+1)/n! reduced to lowest terms, where T(n) are the triangular numbers A000217.
1, 3, 3, 5, 5, 7, 7, 1, 1, 11, 11, 13, 13, 1, 1, 17, 17, 19, 19, 1, 1, 23, 23, 1, 1, 1, 1, 29, 29, 31, 31, 1, 1, 1, 1, 37, 37, 1, 1, 41, 41, 43, 43, 1, 1, 47, 47, 1, 1, 1, 1, 53, 53, 1, 1, 1, 1, 59, 59, 61, 61, 1, 1, 1, 1, 67, 67, 1, 1, 71, 71, 73, 73, 1, 1, 1, 1, 79, 79, 1, 1, 83, 83
Offset: 0
Examples
a(3) = 5 because T(3+1)/3! = T(4)/3! = (4*5/2)/(1*2*3) = 10/6 = 5/3 so the fraction has numerator 5 and denominator A110561(3) = 3. Furthermore, the 3rd term of the exponential generating function of the triangular numbers is (5/3)*x^3.
References
- Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995, p. 9.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Triangular Number.
Programs
-
Mathematica
T[n_] := n*(n + 1)/2; Table[Numerator[T[n + 1]/n! ], {n, 0, 82}] Join[{1},Numerator[With[{nn=90},Rest[Accumulate[Range[nn+1]]]/ Range[ nn]!]]] (* Harvey P. Dale, Feb 17 2016 *)
Formula
a(n)/A110561(n) is the n-th coefficient of the exponential generating function of T(n), the triangular numbers A000217.
a(n) = Denominator((n+2)!*HarmonicNumber(n+2)/binomial(n+2,2)). [Gary Detlefs, Dec 03 2011]
Extensions
Extended by Ray Chandler, Jul 27 2005
Comments