cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110608 Number triangle T(n,k) = binomial(n,k)*binomial(2n,n-k).

Original entry on oeis.org

1, 2, 1, 6, 8, 1, 20, 45, 18, 1, 70, 224, 168, 32, 1, 252, 1050, 1200, 450, 50, 1, 924, 4752, 7425, 4400, 990, 72, 1, 3432, 21021, 42042, 35035, 12740, 1911, 98, 1, 12870, 91520, 224224, 244608, 127400, 31360, 3360, 128, 1, 48620, 393822, 1145664, 1559376
Offset: 0

Views

Author

Paul Barry, Jul 30 2005

Keywords

Comments

First column is A000984. Second column is A110609 = n^2*A000108. Row sums are A005809.

Examples

			Triangle begin
n\k|   0     1     2    3   4   5
---------------------------------
0  |   1
1  |   2     1
2  |   6     8     1
3  |  20    45    18    1
4  |  70   224   168   32   1
5  | 252  1050  1200  450  50   1
...
		

Crossrefs

Cf. A000108, A000984, A005809 (row sums), A008459, A110609 (column 2), A120986.

Programs

  • Mathematica
    Flatten[Table[Table[Binomial[n,k]Binomial[2n,n-k],{k,0,n}],{n,0,10}]] (* Harvey P. Dale, Aug 10 2011 *)
  • Maxima
    B(x,y):=(sqrt(-x*(4*x^2*y^3+(-12*x^2-8*x)*y^2+(12*x^2-20*x+4)*y-4*x^2+x))/(2*3^(3/2))-(x*(18*y+9)-2)/54)^(1/3);
    C(x,y):=-B(x,y)-(x*(3*y-3)+1)/(9*B(x,y))-1/3;
    A(x,y):=x*diff(C(x,y),x)*(-1/C(x,y)+1/(1+C(x,y)));
    taylor(A(x,y),x,0,7,y,0,7); /* Vladimir Kruchinin, Sep 24 2018 */
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n,k)*binomial(2*n,n-k), ", "))) \\ G. C. Greubel, Sep 01 2017
    

Formula

From Peter Bala, Oct 13 2015: (Start)
n-th row polynomial R(n,t) = [x^n] ( (1 + t*x)*(1 + x)^2 )^n.
Cf. A008459, whose n-th row polynomial is equal to [x^n] ( (1 + t*x)*(1 + x) )^n.
exp( Sum_{n >= 1} R(n,t)*x^n/n ) = 1 + (2 + t)*x + (5 + 6*t + t^2)*x^2 + ... is the o.g.f. for A120986. (End)