cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214142 Number of 0..4 colorings of a 1 X (n+1) array circular in the n+1 direction with new values 0..4 introduced in row major order.

Original entry on oeis.org

1, 1, 4, 11, 40, 147, 568, 2227, 8824, 35123, 140152, 559923, 2238328, 8950579, 35796856, 143176499, 572684152, 2290692915, 9162684280, 36650562355, 146601899896, 586406900531, 2345626204024, 9382502019891, 37530002487160
Offset: 1

Views

Author

R. H. Hardin, Jul 05 2012

Keywords

Comments

Row 1 of A214141.

Examples

			Some solutions for n=4:
  0 1 2 0 1     0 1 2 3 1     0 1 0 1 2     0 1 2 1 2
		

Formula

Empirical: a(n) = 6*a(n-1) -7*a(n-2) -6*a(n-3) +8*a(n-4).
Empirical: a(n) = 2^n/6 - 11*(-1)^n/30 + 4^n/30 + 1/6. - R. J. Mathar, Jul 07 2012
Empirical: partial sums of A110613. - Sean A. Irvine, Jul 14 2022

A110614 a(n+3) = 5*a(n+2) - 2*a(n+1) - 8*a(n), a(0) = 1, a(1) = 5, a(2) = 15.

Original entry on oeis.org

1, 5, 15, 57, 215, 841, 3319, 13193, 52599, 210057, 839543, 3356809, 13424503, 53692553, 214759287, 859015305, 3436017527, 13743982729, 54975756151, 219902675081, 879610001271, 3518438606985, 14073751631735, 56295000934537, 225179992553335, 900719947843721
Offset: 0

Views

Author

Creighton Dement, Jul 31 2005

Keywords

Comments

See comment for A110613.

Crossrefs

Programs

  • Maple
    seriestolist(series((1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2ibasejsumseq[(.5'i - .5'k - .5i' + .5k' - .5'ij' - .5'ji' - .5'jk' - .5'kj')('i + j' + 'ij' + 'ji')] Sumtype is set to: sum[Y[15]] = sum[ * ] (disregarding signs)
  • Mathematica
    LinearRecurrence[{5,-2,-8},{1,5,15},30] (* Harvey P. Dale, Dec 28 2013 *)
  • PARI
    Vec((1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)) + O(x^30)) \\ Colin Barker, Feb 05 2017

Formula

G.f.: (1-8*x^2)/((4*x-1)*(2*x-1)*(x+1)).
a(n) + a(n+1) = A063376(n+1).
a(n) = (-7*(-1)^n + 5*2^(1+n) + 3*4^(1+n)) / 15. - Colin Barker, Feb 05 2017
Showing 1-2 of 2 results.