cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110622 n^2 followed by n followed by n^3 followed by n^4.

Original entry on oeis.org

1, 1, 1, 1, 4, 2, 8, 16, 9, 3, 27, 81, 16, 4, 64, 256, 25, 5, 125, 625, 36, 6, 216, 1296, 49, 7, 343, 2401, 64, 8, 512, 4096, 81, 9, 729, 6561, 100, 10, 1000, 10000, 121, 11, 1331, 14641, 144, 12, 1728, 20736, 169, 13, 2197, 28561, 196, 14, 2744, 38416, 225, 15
Offset: 1

Views

Author

Mohammad K. Azarian, Sep 14 2005

Keywords

Crossrefs

Programs

  • Magma
    &cat[[n^2, n, n^3, n^4]: n in [1..20]]; // Vincenzo Librandi, Nov 25 2012
    
  • Mathematica
    Flatten[Table[{n^2, n, n^3, n^4}, {n, 40}]] (* Vincenzo Librandi, Nov 25 2012 *)
  • PARI
    lista(nn) = for(n=1, nn, print1(n^2, ", ", n, ", ", n^3, ", "n^4, ", ")); \\ Jinyuan Wang, Feb 28 2020

Formula

a(n) = 5*a(n-4) - 10*a(n-8) + 10*a(n-12) - 5*a(n-16) + a(n-20).
G.f.: -x*(1 + x + x^2 + x^3 - x^4 - 3*x^5 + 3*x^6 + 11*x^7 - x^8 + 3*x^9 - 3*x^10 + 11*x^11 + x^12 - x^13 - x^14 + x^15) / ( (x-1)^5*(1+x)^5*(x^2+1)^5 ). - R. J. Mathar, Dec 20 2010
a(n) = (2*n + 3 - (-1)^n + 2*(-1)^((2*n + 5 - (-1)^n)/4))*(n^3 + 4*n^2 + 24*n + 116 + (n^3 - 4*n^2 - 24*n + 12)*(-1)^n - (n^3 + 4*n^2 - 8*n - 108)*(-1)^((2*n + 5 - (-1)^n)/4) + (n^3 - 4*n^2 + 8*n - 20)*(-1)^((2*n + 7 + (-1)^n)/4))/2048. - Luce ETIENNE, Sep 02 2016