A110660 Oblong (promic) numbers repeated.
0, 0, 2, 2, 6, 6, 12, 12, 20, 20, 30, 30, 42, 42, 56, 56, 72, 72, 90, 90, 110, 110, 132, 132, 156, 156, 182, 182, 210, 210, 240, 240, 272, 272, 306, 306, 342, 342, 380, 380, 420, 420, 462, 462, 506, 506, 552, 552, 600, 600, 650, 650, 702, 702, 756, 756, 812, 812
Offset: 0
Examples
a(4) = 6; The partitions of 2*4 = 8 into two parts are: (7,1), (6,2), (5,3), (4,4). The sum of the even numbers from the smallest parts of these partitions gives: 2 + 4 = 6. a(5) = 6; The partitions of 2*5 = 10 into two parts are: (9,1), (8,2), (7,3), (6,4), (5,5). The sum of the even numbers from the smallest parts of these partitions gives: 2 + 4 = 6.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Eric Weisstein's World of Mathematics, Pronic Number
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
k:=1; f:=func
; [0] cat [f(n*m): m in [-1,1], n in [1..30]]; // Bruno Berselli, Nov 14 2012 -
Maple
A110660:=n->floor(n/2)*(floor(n/2)+1): seq(A110660(n), n=0..50); # Wesley Ivan Hurt, Jul 25 2014
-
Mathematica
Table[Floor[n/2] (Floor[n/2] + 1), {n, 0, 50}] (* Wesley Ivan Hurt, Jul 25 2014 *) CoefficientList[Series[2*x^2/((1 - x)^3*(1 + x)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jul 25 2014 *) LinearRecurrence[{1,2,-2,-1,1},{0,0,2,2,6},60] (* Harvey P. Dale, Jan 23 2021 *)
-
PARI
a(n)=n\=2;n*(n+1) \\ Charles R Greathouse IV, Jul 05 2013
Formula
a(n) = floor(n/2) * (floor(n/2)+1).
From Wesley Ivan Hurt, Jul 25 2014: (Start)
G.f.: 2*x^2/((1-x)^3*(1+x)^2);
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), for n > 4;
a(n) = (2*n^2 + 2*n - 1 + (2*n + 1)*(-1)^n)/8. (End)
a(n) = Sum_{i=1..n; i even} i. - Olivier Pirson, Nov 05 2017
Extensions
Typo in description (Name) fixed by Harvey P. Dale, Jul 09 2021
Comments