A110729
Factorial terms of Digital factorial (A110728).
Original entry on oeis.org
1, 1, 2, 6, 24, 720, 5040, 362880, 39916800, 479001600, 6227020800, 87178291200
Offset: 0
Title changed, and more terms added by
Colin Barker, Nov 20 2014
A089718
a(0) = 1, a(n) = number obtained by multiplying each digit of a(n-1) by n. May be called digitfactorial of n.
Original entry on oeis.org
1, 1, 2, 6, 24, 1020, 60120, 4207140, 32160568320, 2718954045547227180, 207010809050400405050407020207010800, 22077011088099055044004405505504407702202207701108800, 24240848401212096960108108060600484800484806060060600484808484024240242408484012120969600
Offset: 0
-
str10:=proc(n) if n<>0 then RETURN(convert(n,base,10)) else RETURN([0]) fi end:ds:=proc(s) local j: RETURN(add(s[j]*10^(j-1),j=1..nops(s))): end: ap:=1: for n from 1 to 12 do m:=ds([seq(op(str10(i*n)),i=str10(ap))]): printf("%d, ",m):ap:=m od: # C. Ronaldo
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, (l-> parse(cat(seq(
l[-i]*n, i=1..nops(l)))))(convert(a(n-1), base, 10)))
end:
seq(a(n), n=0..12); # Alois P. Heinz, Dec 12 2020
-
nxt[{n_,a_}]:={n+1,FromDigits[Flatten[IntegerDigits/@((n+1)*IntegerDigits[ a])]]}; Transpose[NestList[nxt,{1,1},10]][[2]] (* Harvey P. Dale, Mar 26 2015 *)
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 25 2004
A323416
a(n) = (n-1)! * (10^n - 1) / 9.
Original entry on oeis.org
1, 11, 222, 6666, 266664, 13333320, 799999920, 55999999440, 4479999995520, 403199999959680, 40319999999596800, 4435199999995564800, 532223999999946777600, 69189119999999308108800, 9686476799999990313523200, 1452971519999999854702848000, 232475443199999997675245568000, 39520825343999999960479174656000
Offset: 1
Example for n = 3:
Take the number 569.
Sum the permutations of its digits: 569 + 596 + 659 + 695 + 956 + 965 = 4440.
Add all its digits: 5 + 6 + 9 = 20.
Divide: 4440 / 20 = 222.
General proof for n = 3:
Number: abc where a,b,c are distinct.
The sum of the permutations is 200*(a+b+c) + 20*(a+b+c) + 2*(a+b+c) = 222*(a+b+c), so a(3) = 222.
-
Table[(n-1)! (10^n-1)/9,{n,20}] (* Harvey P. Dale, Mar 15 2024 *)
-
a(n) = (10^n - 1) / 9 * (n-1)! \\ David A. Corneth, Jan 13 2019
-
f = lambda n:+(n==0) or n*f(n-1)
def seq(n):
if n==0: return
l = []
for i in range(1, n + 1):
# following line with a string repeat
# s = int('1'*i)
s = 0
for j in range(i):
s += 10 ** j
l += [s*f(i-1)]
return l
Showing 1-3 of 3 results.
Comments