cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A110728 Digital factorial: a(0) = 1, a(n) = n * (the sum of the digits of a(n-1)).

Original entry on oeis.org

1, 1, 2, 6, 24, 30, 18, 63, 72, 81, 90, 99, 216, 117, 126, 135, 144, 153, 162, 171, 180, 189, 396, 414, 216, 225, 234, 243, 252, 261, 270, 279, 576, 594, 612, 315, 324, 333, 342, 351, 360, 369, 756, 774, 792, 810, 414, 423, 432, 441, 450, 459, 936, 954, 972
Offset: 0

Views

Author

Amarnath Murthy, Aug 09 2005

Keywords

Examples

			a(4) = 24, a(5) = 5*(2+4) = 30, a(6) = 6*3 = 18.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          n*add(i, i=convert(a(n-1), base, 10)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 12 2020
  • Mathematica
    DigitSum[n_, 10] := Total[IntegerDigits[n, 10]]; A110728[0] := 1; A110728[n_] := A110728[n] = n*DigitSum[A110728[n - 1], 10]; Table[A110728[n], {n, 0, 50}] (* G. C. Greubel, Sep 06 2017 *)
  • PARI
    s=vector(1001, n, 1); for(n=2, #s, s[n]=(n-1)*sumdigits(s[n-1])); s \\ Colin Barker, Nov 20 2014

Extensions

a(22) and a(32) corrected, name clarified, and more terms added by Colin Barker, Nov 20 2014

A337770 a(0)=1; a(n) is the leading digit of a(n-1) multiplied by n concatenated with the remaining digits of a(n-1).

Original entry on oeis.org

1, 1, 2, 6, 24, 104, 604, 4204, 32204, 272204, 2072204, 22072204, 242072204, 2642072204, 28642072204, 308642072204, 4808642072204, 68808642072204, 1088808642072204, 19088808642072204, 209088808642072204, 4209088808642072204, 88209088808642072204
Offset: 0

Views

Author

Jamie Robert Creasey, Sep 19 2020

Keywords

Comments

This sequence bears similarities to the digit factorials, see A089718. However, unlike the digit factorials, we only multiply the leading digit of a(n-1) by n, instead of all digits present. As such, for indices greater than 4, a(n) includes all the digits from a(n-1), except those resulting from the lead digit of a(n-1) being multiplied by n.
If one attempts this with the last digit of a(n-1) instead, 220 is the largest integer reached by the process. All indices greater than 4 yield the same number, as the last digit of 220 is 0 which, if multiplied by 5, results in itself and, if other digits remain consistent, causes 220 to repeat infinitely.

Examples

			As a(4) is 24, a(5) is {2*5, 4} which is 104, where {x, y} is the concatenation of x and y.
a(7) is 4204, a(8) is {4*8, 204} which is 32204.
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:=Module[{ida=IntegerDigits[a]},{n+1,ida[[1]](n+1)10^(Length[ ida]-1)+FromDigits[Rest[ida]]}]; NestList[nxt,{0,1},25][[All,2]] (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    seq(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, my(t=v[n], b=10^logint(t,10), h=t\b*b); v[n+1] = h*n + (t-h)); v} \\ Andrew Howroyd, Sep 19 2020

A337016 a(0) = 0. Successive terms are double the previous, then with their digits incremented by 1.

Original entry on oeis.org

0, 1, 3, 7, 25, 61, 233, 577, 2265, 5641, 22393, 55897, 2228105, 5567321, 22245753, 555102617, 2221316345, 55537437101, 222185985313, 5554821081737, 222110753274585, 5553326176510281, 22217763464131673, 555466371039374457, 222110438531898591025
Offset: 0

Views

Author

Jamie Robert Creasey, Nov 21 2020

Keywords

Comments

If 9 appears anywhere in the decimal expansion of 2*a(n-1), we replace that digit with 10 upon incrementing by 1. See a(12) of the Examples section and A216556 for more information.

Examples

			To calculate a(12), double 55897 to get 111794, then increment the digits by 1 to get 2228105.
To calculate a(13), double 2228105 to get 4456210, then increment the digits by 1 to get 5567321.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, (l-> parse(cat(seq(
          l[-i]+1, i=1..nops(l)))))(convert(2*a(n-1), base, 10)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 12 2020
  • Mathematica
    NestList[FromDigits[Flatten@ Map[IntegerDigits, IntegerDigits[2 #] + 1]] &, 0, 24] (* Michael De Vlieger, Dec 11 2020 *)
  • PARI
    digs(n) = if (n==0, [0], digits(n));
    lista(nn) = {a = 0; print1(a, ", "); for (n=1, nn, a = eval(concat(apply(t->Str(t+1), digs(2*a)))); print1(a, ", "););} \\ Michel Marcus, Nov 28 2020

Formula

a(n) = A216556(2*a(n-1)), a(0) = 0.

A338767 a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by n.

Original entry on oeis.org

0, 1, 3, 6, 10, 65, 1211, 8988, 16171616, 1015101610151015, 11101115111011161110111511101115, 1212121112121216121212111212121712121211121212161212121112121216
Offset: 0

Views

Author

Jamie Robert Creasey, Nov 07 2020

Keywords

Comments

This sequence is the additive counterpart of the digit factorials which, unlike the digit factorials, increases at a faster pace. A061511 and its relatives bear similarities to this sequence, but each of these increase at varying rates depending on the chosen constant. However, unlike these sequences, the constant increases by 1 each time. If digits within a(n-1) exceed 9 when one adds a constant, we ignore carrying and replace the digit with its correct value, thus 9+1 = 10. a(15) has 1024 digits.

Examples

			a(5) = {1+5, 0+5} = 65, where {x, y} is the concatenation of x and y.
a(6) = {6+6, 5+6} = 1211.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, (l-> parse(cat(
          seq(n+l[-i], i=1..nops(l)))))(convert(a(n-1), base, 10)))
        end:
    seq(a(n), n=0..12);  # Alois P. Heinz, Nov 15 2020
  • Mathematica
    Nest[Append[#1, FromDigits@ Apply[Join, Map[IntegerDigits, IntegerDigits[#1[[-1]] ] + #2]]] & @@ {#, Length@ #} &, {0}, 11] (* Michael De Vlieger, Nov 13 2020 *)
Showing 1-4 of 4 results.