cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110759 a(n) = tau(N), where N = concatenation 1,2,3,...,n,...,3,2,1. E.g., for n = 4, N = 1234321.

Original entry on oeis.org

1, 3, 9, 9, 9, 243, 9, 81, 45, 2, 4, 18, 8, 64, 96, 16, 24, 48, 64, 4, 48, 8, 16, 384, 4, 64, 640, 4, 16, 768, 16, 512, 144, 64, 64, 448, 8, 48, 192, 16, 64, 96, 8, 64, 896, 128, 64, 192, 128, 128, 384, 32, 64, 1280, 16, 64, 192, 16, 24, 192, 32, 16
Offset: 1

Views

Author

Amarnath Murthy, Aug 11 2005

Keywords

Comments

First 9 terms are odd as corresponding N are perfect squares.
Factorization of the larger N values:
f(25) = 989931671244066864878631629*p53
f(26) = 7*3209*17627*1322221*554840431325362973971*p48
f(27) = 3^4*7*223*28807*108727*5439394515032275997*361855463775135800641*p34
f(28) = 149*p89
f(29) = 7*317310923*296879723071339*p72
f(30) = 3^2*7*167*761*133337*431911*273884231501*4950715302671*p58
f(31) = 827*1141296551*10940622359204560200188943089306257*p58
f(32) = 7*31*5537737*42583813*62231909*19871693507*1441602757913*15884064847039967*p44
f(33) = 3^2*7^2*281*743580875118413*177233764237488717892587862569137279765057*p50
f(34) = 197*509*17780359481*34117699655579*22315348168833851*p70
f(35) = 7*10243*73778819*217751506979*815234955828637451*p78

Examples

			a(3) = tau(12321) = 9.
		

Crossrefs

Programs

  • Maple
    A055642 := proc(n) 1+floor(log10(n)) ; end; A000005 := proc(n) numtheory[tau](n) ; end ; rep := proc(n) local a ; a := 1 ; for i from 2 to n do a := a*10^A055642(i)+i ; end; for i from n-1 to 1 by -1 do a := a*10^A055642(i)+i ; end; RETURN(a) ; end; A110759 := proc(n) A000005(rep(n)) ; end; for n from 1 to 50 do printf("%d %d ",n,A110759(n)) ; od ; # R. J. Mathar, Feb 10 2007
  • Mathematica
    Table[DivisorSigma[0,FromDigits[Join[Flatten[IntegerDigits/@Range[n]], Flatten[ IntegerDigits/@ Range[n-1,1,-1]]]]],{n,40}] (* Harvey P. Dale, Nov 17 2017 *)

Formula

a(n) = A000005(A173426(n)). - Georg Fischer, Feb 28 2023

Extensions

More terms from R. J. Mathar, Feb 10 2007
a(21)-a(35) from Robert Gerbicz, Nov 27 2010
a(36)-a(44) from Jinyuan Wang, May 17 2020
a(45)-a(58) from Tyler Busby, Feb 13 2023
a(59)-a(62) from Tyler Busby, Mar 04 2025