A111058 Numbers k such that the average of the first k Lucas numbers is an integer.
1, 2, 8, 12, 20, 24, 48, 60, 68, 72, 92, 96, 120, 140, 144, 188, 192, 200, 212, 216, 240, 288, 300, 332, 336, 360, 384, 428, 432, 440, 452, 480, 500, 548, 576, 600, 648, 660, 668, 672, 680, 692, 696, 720, 768, 780, 788, 812, 864, 908, 932, 960, 1008, 1028, 1052
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harvey P. Dale)
Programs
-
Mathematica
Lucas[n_] := Fibonacci[n+1]+Fibonacci[n-1]; lst={}; s=0; Do[s=s+Lucas[n]; If[Mod[s, n]==0, AppendTo[lst, n]], {n, 1000}]; lst (* T. D. Noe *) Module[{nn=1000,ln},ln=LucasL[Range[nn]];Table[If[IntegerQ[Mean[Take[ln,n]]],n,Nothing],{n,nn}]] (* Harvey P. Dale, Apr 22 2024 *)
Formula
k such that (Sum_{i=1..k} A000204(i))/k is an integer.
{ k : A027961(k) == 0 (mod k) }. - Alois P. Heinz, Apr 23 2024
Comments