A111063 a(0) = 1; a(n) = (n-1)*a(n-1) + n.
1, 1, 3, 9, 31, 129, 651, 3913, 27399, 219201, 1972819, 19728201, 217010223, 2604122689, 33853594971, 473950329609, 7109254944151, 113748079106433, 1933717344809379, 34806912206568841, 661331331924807999, 13226626638496160001, 277759159408419360043
Offset: 0
References
- F. Drewes et al., Tight Bounds for Cut-Operations on Deterministic Finite Automata, in Lecture Notes in Computer Science, Volume 9288 2015, Machines, Computations, and Universality, 7th International Conference, MCU 2015, Famagusta, North Cyprus, September 9-11, 2015, Editors: Jerome Durand-Lose, Benedek Nagy, ISBN: 978-3-319-23110-5 (Print) 978-3-319-23111-2 (Online). ["In the On-Line Encyclopedia of Integer Sequences (OEIS) this matches the sequence A111063."]
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
Programs
-
Haskell
a111063 n = a111063_list !! n a111063_list = 1 : zipWith (+) [1..] (zipWith (*) [0..] a111063_list) -- Reinhard Zumkeller, Aug 30 2014
-
Maple
a:=proc(n) option remember; if n=0 then RETURN(1); fi; (n-1)*a(n-1)+n; end; # Alternatively: a := n -> `if`(n=0, 1, 2*exp(1)*GAMMA(n, 1) - 1): seq(simplify(a(n)), n=0..22); # Peter Luschny, Nov 21 2017
-
Mathematica
FoldList[#1*#2 + #2 + 1 &, 1, Range[21]] (* Robert G. Wilson v, Jul 07 2012 *)
Formula
a(n+1) = Sum_{k=0..2*n} C(n,floor(k/2))(n-floor(k/2))!. - Paul Barry, May 04 2007
a(n) = A030297(n)/n, n>0.
a(n) = 2*floor(e*n!) - 1, n>1. - Gary Detlefs, Jun 10 2010
E.g.f.: exp(x)*(1+x)/(1-x), - N. J. A. Sloane, May 03 2017
a(n) ~ 2*sqrt(2*Pi)*exp(1)*n^n*sqrt(n)/exp(n). - Ilya Gutkovskiy, Aug 02 2016
a(n) = 2*exp(1)*GAMMA(n, 1) - 1 for n>=1. - Peter Luschny, Nov 21 2017
Comments