cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A111211 Divisors of 10^16 - 1.

Original entry on oeis.org

1, 3, 9, 11, 17, 33, 51, 73, 99, 101, 137, 153, 187, 219, 303, 411, 561, 657, 803, 909, 1111, 1233, 1241, 1507, 1683, 1717, 2329, 2409, 3333, 3723, 4521, 5151, 6987, 7227, 7373, 9999, 10001, 11169, 13563, 13651, 13837, 15453, 18887, 20961, 22119, 25619
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 25 2005

Keywords

Crossrefs

Programs

A113522 Divisors of 10^18 - 1.

Original entry on oeis.org

1, 3, 7, 9, 11, 13, 19, 21, 27, 33, 37, 39, 57, 63, 77, 81, 91, 99, 111, 117, 133, 143, 171, 189, 209, 231, 247, 259, 273, 297, 333, 351, 399, 407, 429, 481, 513, 567, 627, 693, 703, 741, 777, 819, 891, 999, 1001, 1053, 1197, 1221, 1287, 1443, 1463, 1539, 1729
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jan 12 2006

Keywords

Crossrefs

Programs

A113116 Divisors of 10^17 - 1.

Original entry on oeis.org

1, 3, 9, 2071723, 6215169, 18645507, 5363222357, 16089667071, 48269001213, 11111111111111111, 33333333333333333, 99999999999999999
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Jan 02 2006

Keywords

Crossrefs

Programs

A226477 Table (read by rows) of the natural numbers (in ascending order) whose reciprocals have only periodic decimals of length k.

Original entry on oeis.org

1, 3, 9, 11, 33, 99, 27, 37, 111, 333, 999, 101, 303, 909, 1111, 3333, 9999, 41, 123, 271, 369, 813, 2439, 11111, 33333, 99999, 7, 13, 21, 39, 63, 77, 91, 117, 143, 189, 231, 259, 273, 297, 351, 407, 429, 481, 693, 777, 819, 1001, 1221, 1287, 1443, 2079, 2331, 2457, 2849, 3003, 3367, 3663, 3861, 4329, 5291, 6993, 8547, 9009, 10101, 10989, 12987, 15873, 25641, 27027, 30303, 37037, 47619, 76923, 90909, 111111, 142857, 333333, 999999
Offset: 1

Views

Author

Martin Renner, Jun 08 2013

Keywords

Comments

The k-th row always ends with 10^k - 1 = 99..99 (k times 9).
The number of elements in row k is A059892(k).

Examples

			The table T(k,m), m = 1..A059892(k), begins
  1, 3, 9;
  11, 33, 99;
  27, 37, 111, 333, 999;
  etc.
		

Crossrefs

Programs

  • Maple
    a:=[1,3,9]: S:={1,3,9}: for k from 2 to 6 do T:=numtheory[divisors](10^k-1): a:=[op(a),op(T minus S)]: S:=S union T; od: a;
  • PARI
    Row(n) = my(v=divisors(10^n-1)); select(x->(znorder(Mod(10,x))==n), v) \\ Jianing Song, Jun 15 2021
Showing 1-4 of 4 results.