A111125 Triangle read by rows: T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.
1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 30, 27, 9, 1, 11, 55, 77, 44, 11, 1, 13, 91, 182, 156, 65, 13, 1, 15, 140, 378, 450, 275, 90, 15, 1, 17, 204, 714, 1122, 935, 442, 119, 17, 1, 19, 285, 1254, 2508, 2717, 1729, 665, 152, 19, 1, 21, 385, 2079, 5148, 7007, 5733, 2940, 952, 189, 21, 1
Offset: 0
Examples
Triangle T(k,s) begins: k\s 0 1 2 3 4 5 6 7 8 9 10 0: 1 1: 3 1 2: 5 5 1 3: 7 14 7 1 4: 9 30 27 9 1 5: 11 55 77 44 11 1 6: 13 91 182 156 65 13 1 7: 15 140 378 450 275 90 15 1 8: 17 204 714 1122 935 442 119 17 1 9: 19 285 1254 2508 2717 1729 665 152 19 1 10: 21 385 2079 5148 7007 5733 2940 952 189 21 1 ... Extended and reformatted by _Wolfdieter Lang_, Oct 18 2012 Application for Fibonacci numbers F_{(2*k+1)*n}, row k=3: F_{7*n} = 7*(-1)^(3*n)*F_n + 14*(-1)^(4*n)*5*F_n^3 + 7*(-1)^(5*n)*5^2*F_n^5 + 1*(-1)^(6*n)*5^3*F_n^7, n>=0. - _Wolfdieter Lang_, Aug 24 2012 Example for the Z- and A-sequence recurrences of this Riordan triangle: Z = A217477 = [3,-4,12,-40,...]; T(4,0) = 3*7 -4*14 +12*7 -40*1 = 9. A = [1, 2, -1, 2, -5, 14, ..]; T(5,2) = 1*30 + 2*27 - 1*9 + 2*1= 77. _Wolfdieter Lang_, Oct 18 2012 Example for the (4*(k+1))-gon length ratio s(4*(k+1))(side/radius) as polynomial in the ratio rho(4*(k+1)) ((smallest diagonal)/side): k=0, s(4) = 1*rho(4) = sqrt(2); k=1, s(8) = -3*rho(8) + rho(8)^3 = sqrt(2-sqrt(2)); k=2, s(12) = 5*rho(12) - 5*rho(12)^3 + rho(12)^5, and C(12,x) = x^4 - 4*x^2 + 1, hence rho(12)^5 = 4*rho(12)^3 - rho(12), and s(12) = 4*rho(12) - rho(12)^3 = sqrt(2 - sqrt(3)). - _Wolfdieter Lang_, Oct 04 2013 Example for the recurrence for the signed triangle S(k,s)= ((-1)^(k-s))*T(k,s) (see the Aug 14 2014 comment above): S(4,1) = 0 + (-2*2 - 1)*S(3,1) - (1/2)*(3*4^2*S(3,2) + 4*4^3*S(3,3)) = - 5*14 - 3*8*(-7) - 128*1 = -30. The recurrence from the Riordan A-sequence A115141 is S(4,1) = -7 -2*14 -(-7) -2*1 = -30. - _Wolfdieter Lang_, Aug 14 2014
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- R. Andre-Jeannin, A generalization of Morgan-Voyce polynomials, The Fibonacci Quarterly 32.3 (1994): 228-31.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group and Chebyshev polynomials, arXiv:2502.13673 [math.CO], 2025.
- K. Dilcher and K. B. Stolarsky, A Pascal-type triangle characterizing twin primes, Amer. Math. Monthly, 112 (2005), 673-681.
- P. Damianou , On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
- P. Damianou and C. Evripidou, Characteristic and Coxeter polynomials for affine Lie algebras, arXiv preprint arXiv:1409.3956 [math.RT], 2014.
- D. Jennings, Some Polynomial Identities for the Fibonacci and Lucas Numbers, Fib. Quart., 31(2) (1993), 134-137.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comp. 61 (1993), no. 203, 277-294.
- Yidong Sun, Numerical triangles and several classical sequences, Fib. Quart., Nov. 2005, pp. 359-370.
- T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, Tome 55(103), No.1, (2012) 95-103.
- Eric Weisstein's World of Mathematics, Morgan-Voyce polynomials
Crossrefs
Programs
-
Magma
[((2*n+1)/(n+k+1))*Binomial(n+k+1, 2*k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 01 2022
-
Mathematica
(* First program *) u[1, x_]:=1; v[1, x_]:=1; z=16; u[n_, x_]:= u[n-1, x] + x*v[n-1, x]; v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208513 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A111125 *) (* Clark Kimberling, Feb 28 2012 *) (* Second program *) T[n_, k_]:= ((2*n+1)/(2*k+1))*Binomial[n+k, 2*k]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 01 2022 *)
-
Sage
@CachedFunction def T(n,k): if n< 0: return 0 if n==0: return 1 if k == 0 else 0 h = 3*T(n-1,k) if n==1 else 2*T(n-1,k) return T(n-1,k-1) - T(n-2,k) - h A111125 = lambda n,k: (-1)^(n-k)*T(n,k) for n in (0..9): [A111125(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
Formula
T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.
From Peter Bala, Apr 30 2012: (Start)
T(n,k) = binomial(n+k,2*k) + 2*binomial(n+k,2*k+1).
The row generating polynomials P(n,x) are a generalization of the Morgan-Voyce polynomials b(n,x) and B(n,x). They satisfy the recurrence equation P(n,x) = (x+2)*P(n-1,x) - P(n-2,x) for n >= 2, with initial conditions P(0,x) = 1, P(1,x) = x+r+1 and with r = 2. The cases r = 0 and r = 1 give the Morgan-Voyce polynomials A085478 and A078812 respectively. Andre-Jeannin has considered the case of general r.
P(n,x) = U(n+1,1+x/2) + U(n,1+x/2), where U(n,x) denotes the Chebyshev polynomial of the second kind - see A053117. P(n,x) = (2/x)*(T(2*n+2,u)-T(2*n,u)), where u = sqrt((x+4)/4) and T(n,x) denotes the Chebyshev polynomial of the first kind - see A053120. P(n,x) = Product_{k = 1..n} ( x + 4*(sin(k*Pi/(2*n+1)))^2 ). P(n,x) = 1/x*(b(n+1,x) - b(n-1,x)) and P(n,x) = 1/x*{(b(2*n+2,x)+1)/b(n+1,x) - (b(2*n,x)+1)/b(n,x)}, where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478. Cf. A211957.
(End)
From Wolfdieter Lang, Oct 18 2012 (Start)
O.g.f. column No. s: ((1+x)/(1-x)^2)*(x/(1-x)^2)^s, s >= 0. (from the Riordan data given in a comment above).
O.g.f. of the row polynomials R(k,x):= Sum_{s=0..k} ( T(k,s)*x^s ), k>=0: (1+z)/(1-(2+x)*z+z^2) (from the Riordan property).
(End)
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013
Extensions
More terms from Paul Barry, Oct 17 2005
Comments