cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A265160 a(n) = 2^n + prime(n).

Original entry on oeis.org

4, 7, 13, 23, 43, 77, 145, 275, 535, 1053, 2079, 4133, 8233, 16427, 32815, 65589, 131131, 262205, 524355, 1048647, 2097225, 4194383, 8388691, 16777305, 33554529, 67108965, 134217831, 268435563, 536871021, 1073741937, 2147483775, 4294967427, 8589934729
Offset: 1

Views

Author

Vincenzo Librandi, Dec 03 2015

Keywords

Comments

a(n) is odd for n>1. The first few primes in this sequence are 7, 13, 23, 43, 4133, 8233, 16427, 8388691, ... . - Wesley Ivan Hurt, Dec 05 2015

Crossrefs

Programs

  • Magma
    [NthPrime(n) + 2^n: n in [1..40]];
    
  • Maple
    A265160:=n->2^n + ithprime(n): seq(A265160(n), n=1..40); # Wesley Ivan Hurt, Dec 05 2015
  • Mathematica
    Table[2^n + Prime[n], {n, 40}]
  • PARI
    a(n) = 2^n + prime(n); \\ Altug Alkan, Dec 03 2015

Formula

From Wesley Ivan Hurt, Dec 05 2015: (Start)
a(n) = A000079(n) + A000040(n), for n>0.
a(n) = A100484(n) + A111209(n). (End)

A111210 Primes of the form (2^k - prime(k))/3.

Original entry on oeis.org

3, 7, 17, 37, 79, 163, 183251937907, 96076792050570491, 27043212804868893898596335047829, 1772303994379887830538409413707125877, 510831846955296286119449009050103061206246374061200369
Offset: 1

Views

Author

Roger L. Bagula, Oct 25 2005

Keywords

Comments

Corresponding k's are 4, 5, 6, 7, 8, 9, 39, 58, 106, 122, 180, 309, 357, 696, ... - Michel Marcus, Jul 04 2021

Crossrefs

Cf. A111209.

Programs

  • Mathematica
    a = Flatten[Table[If[PrimeQ[(2^n - Prime[n])/3] == True, (2^n - Prime[n])/3, {}], {n, 1, 100}]]
    Table[ If[PrimeQ[(2^n - Prime[n])/3], (2^n - Prime[n])/3, {}], {n, 1, 200}]//Flatten (* Robert G. Wilson v, Oct 31 2005 *)

Extensions

a(9)-a(11) from Robert G. Wilson v, Oct 31 2005
Edited by N. J. A. Sloane, Nov 19 2005

A277801 a(n) = 2^(n - 1) - prime(n).

Original entry on oeis.org

-1, -1, -1, 1, 5, 19, 47, 109, 233, 483, 993, 2011, 4055, 8149, 16337, 32715, 65477, 131011, 262077, 524217, 1048503, 2097073, 4194221, 8388519, 16777119, 33554331, 67108761, 134217621, 268435347, 536870799, 1073741697, 2147483517, 4294967159, 8589934453, 17179869035
Offset: 1

Views

Author

Alonso del Arte, Oct 31 2016

Keywords

Comments

Obviously all terms are odd. Only the first three terms are negative.
The law of small numbers says there are not enough small numbers for all the demands placed on them.
I think one of those demands is that there be a strong correlation between the powers of 2 and the prime numbers. The first four primes and the first four powers of 2 deliver. But then the powers of 2 rise, literally, exponentially, leaving the primes behind in the dust.

Crossrefs

Cf. A111209.

Programs

  • Mathematica
    Table[2^(n - 1) - Prime[n], {n, 35}]

Formula

a(n) is approximately 2^(n - 1).
Showing 1-3 of 3 results.