cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111253 a(n) is the number of ways the set {1^4, 2^4, ..., n^4} can be partitioned into two sets of equal sums.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 8, 9, 0, 0, 16, 50, 0, 0, 212, 255, 0, 0, 1396, 2994, 0, 0, 14529, 22553, 0, 0, 138414, 236927, 0, 0, 1227670, 2388718, 0, 0, 13733162, 23214820, 0, 0, 140197641, 263244668, 0, 0, 1596794975, 2830613464, 0, 0
Offset: 1

Views

Author

Robert G. Wilson v, Oct 31 2005

Keywords

Comments

a(n)=0 when n == 1 or 2 (mod 4).

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local m;
          m:= (-1+(10+(15+6*i)*i)*i^2)*i/30;
          `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i^4), i-1) +b(n+i^4, i-1)))
        end:
    a:= n-> `if`(irem(n-1, 4)<2, 0, b(n^4, n-1)):
    seq(a(n), n=1..38);  # Alois P. Heinz, Oct 30 2011
  • Mathematica
    d = {1, 1}; nMax=50; zeroLst = {0}; Do[p = n^4; d = PadLeft[d, Length[d] + p] + PadRight[d, Length[d] + p]; If[1 == Mod[Length[d], 2], AppendTo[zeroLst, d[[(Length[d] + 1)/2]]], AppendTo[zeroLst, 0]], {n, 2, nMax}]; zeroLst/2 (* T. D. Noe, Oct 31 2005 *)
    p = 1; t = {}; Do[p = Expand[p(x^(n^4) + x^(-n^4))]; AppendTo[t, Select[p, NumberQ[ # ] &]/2], {n, 30}]; t

Formula

a(n) is half the coefficient of x^0 in product_{k=1..n} x^(k^4)+x^(k^-4).
a(n) = [x^(n^4)] Product_{k=1..n-1} (x^(k^4) + 1/x^(k^4)). - Ilya Gutkovskiy, Feb 01 2024

Extensions

a(51)-a(54) from T. D. Noe, Nov 01 2005
Corrected a(51)-a(52) and extended up to a(58) by Alois P. Heinz, Oct 31 2011