A111253 a(n) is the number of ways the set {1^4, 2^4, ..., n^4} can be partitioned into two sets of equal sums.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 8, 9, 0, 0, 16, 50, 0, 0, 212, 255, 0, 0, 1396, 2994, 0, 0, 14529, 22553, 0, 0, 138414, 236927, 0, 0, 1227670, 2388718, 0, 0, 13733162, 23214820, 0, 0, 140197641, 263244668, 0, 0, 1596794975, 2830613464, 0, 0
Offset: 1
Keywords
Programs
-
Maple
b:= proc(n, i) option remember; local m; m:= (-1+(10+(15+6*i)*i)*i^2)*i/30; `if`(n>m, 0, `if`(n=m, 1, b(abs(n-i^4), i-1) +b(n+i^4, i-1))) end: a:= n-> `if`(irem(n-1, 4)<2, 0, b(n^4, n-1)): seq(a(n), n=1..38); # Alois P. Heinz, Oct 30 2011
-
Mathematica
d = {1, 1}; nMax=50; zeroLst = {0}; Do[p = n^4; d = PadLeft[d, Length[d] + p] + PadRight[d, Length[d] + p]; If[1 == Mod[Length[d], 2], AppendTo[zeroLst, d[[(Length[d] + 1)/2]]], AppendTo[zeroLst, 0]], {n, 2, nMax}]; zeroLst/2 (* T. D. Noe, Oct 31 2005 *) p = 1; t = {}; Do[p = Expand[p(x^(n^4) + x^(-n^4))]; AppendTo[t, Select[p, NumberQ[ # ] &]/2], {n, 30}]; t
Formula
a(n) is half the coefficient of x^0 in product_{k=1..n} x^(k^4)+x^(k^-4).
a(n) = [x^(n^4)] Product_{k=1..n-1} (x^(k^4) + 1/x^(k^4)). - Ilya Gutkovskiy, Feb 01 2024
Extensions
a(51)-a(54) from T. D. Noe, Nov 01 2005
Corrected a(51)-a(52) and extended up to a(58) by Alois P. Heinz, Oct 31 2011
Comments