cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A158465 Number of solutions to +-1+-2^4+-3^4+-4^4...+-n^4=0.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 16, 18, 0, 0, 32, 100, 0, 0, 424, 510, 0, 0, 2792, 5988, 0, 0, 29058, 45106, 0, 0, 276828, 473854, 0, 0, 2455340, 4777436, 0, 0, 27466324, 46429640, 0, 0, 280395282, 526489336, 0, 0, 3193589950, 5661226928, 0, 0
Offset: 1

Views

Author

Pietro Majer, Mar 19 2009

Keywords

Comments

Constant term in the expansion of (x + 1/x)(x^16 + 1/x^16)..(x^n^4 + 1/x^n^4).
a(n)=0 for any n=1 (mod 4) or n=2 (mod 4).
Andrica & Tomescu give a more general integral formula than the one below. The asymptotic formula below is a conjecture by Andrica & Ionascu; it remains unproven. - Jonathan Sondow, Nov 11 2013

Examples

			For n=16 the a(16) = 2 solutions are +1 +16 +81 +256 -625 -1296 -2401 +4096 +6561 +10000 +14641 +20736 -28561 -38416 -50625 +65536 = 0 and the opposite.
		

Crossrefs

A111253(n) = a(n)/2. - Alois P. Heinz, Oct 31 2011

Programs

  • Maple
    N:=32: p:=1 a:=[]: for n from 32 to N do p:=expand
    (p*(x^(n^4)+x^(-n^4))): a:=[op(a), coeff(p,x,0)]: od:a;

Formula

Integral representation: a(n) = ((2^n)/Pi)*int_0^pi prod_{k=1}^n cos(x*k^4) dx.
Asymptotic formula: a(n) = (2^n)*sqrt(18/(Pi*n^9))*(1+o(1)) as n->infinity; n=-1 or 0 (mod 4).

Extensions

a(35)-a(58) from Alois P. Heinz, Oct 31 2011

A369629 Number of solutions to +- 1^4 +- 2^4 +- 3^4 +- ... +- n^4 = 0 or 1.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 0, 16, 18, 0, 21, 32, 100, 126, 0, 424, 510, 0, 1428, 2792, 5988, 9786, 7, 29058, 45106, 22, 150437, 276828, 473854, 836737, 1838, 2455340, 4777436, 15847, 14696425, 27466324, 46429640, 83010230, 738627
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2024

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from collections import Counter
    def A369629_gen(): # generator of terms
        ccount = Counter({0:1})
        yield 1
        for i in count(1):
            bcount = Counter()
            for a in ccount:
                bcount[a+(j:=i**4)] += ccount[a]
                bcount[a-j] += ccount[a]
            ccount = bcount
            yield(ccount[0]+ccount[1])
    A369629_list = list(islice(A369629_gen(),20)) # Chai Wah Wu, Jan 29 2024

Extensions

a(46)-a(50) from Chai Wah Wu, Jan 29 2024

A369732 Number of solutions to +- 1^4 +- 2^4 +- 3^4 +- ... +- n^4 = 1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 21, 0, 0, 126, 0, 0, 0, 0, 1428, 0, 0, 9786, 7, 0, 0, 22, 150437, 0, 0, 836737, 1838, 0, 0, 15847, 14696425, 0, 0, 83010230, 738627, 0, 0, 6024822, 1640652994, 0, 0, 10271377082, 226033104, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2024

Keywords

Crossrefs

Formula

a(n) = [x^1] Product_{k=1..n} (x^(k^4) + 1/x^(k^4)).

Extensions

a(46)-a(60) from Alois P. Heinz, Jan 30 2024
Showing 1-3 of 3 results.