cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A369358 a(n) is the constant term in expansion of Product_{k=1..n} (x^(k^4) + 1 + 1/x^(k^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 15, 25, 59, 109, 227, 525, 1321, 2917, 7085, 15893, 38759, 90179, 223933, 534867, 1339691, 3246961, 8296441, 20426971, 52715563, 131480623, 342491253, 864759837, 2270860455, 5793103989, 15316065497, 39429185075, 105008858223
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 21 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Product[x^(k^4) + 1 + 1/x^(k^4), {k, 1, n}], x, 0], {n, 0, 25}]

Extensions

a(26)-a(37) from Alois P. Heinz, Jan 21 2024

A369629 Number of solutions to +- 1^4 +- 2^4 +- 3^4 +- ... +- n^4 = 0 or 1.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 0, 16, 18, 0, 21, 32, 100, 126, 0, 424, 510, 0, 1428, 2792, 5988, 9786, 7, 29058, 45106, 22, 150437, 276828, 473854, 836737, 1838, 2455340, 4777436, 15847, 14696425, 27466324, 46429640, 83010230, 738627
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2024

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from collections import Counter
    def A369629_gen(): # generator of terms
        ccount = Counter({0:1})
        yield 1
        for i in count(1):
            bcount = Counter()
            for a in ccount:
                bcount[a+(j:=i**4)] += ccount[a]
                bcount[a-j] += ccount[a]
            ccount = bcount
            yield(ccount[0]+ccount[1])
    A369629_list = list(islice(A369629_gen(),20)) # Chai Wah Wu, Jan 29 2024

Extensions

a(46)-a(50) from Chai Wah Wu, Jan 29 2024

A369732 Number of solutions to +- 1^4 +- 2^4 +- 3^4 +- ... +- n^4 = 1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 21, 0, 0, 126, 0, 0, 0, 0, 1428, 0, 0, 9786, 7, 0, 0, 22, 150437, 0, 0, 836737, 1838, 0, 0, 15847, 14696425, 0, 0, 83010230, 738627, 0, 0, 6024822, 1640652994, 0, 0, 10271377082, 226033104, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 30 2024

Keywords

Crossrefs

Formula

a(n) = [x^1] Product_{k=1..n} (x^(k^4) + 1/x^(k^4)).

Extensions

a(46)-a(60) from Alois P. Heinz, Jan 30 2024

A368206 a(n) = [x^n] Product_{k=1..n} (x^(k^4) + 1/x^(k^4)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 8, 13, 0, 0, 272, 0, 0, 0, 5400, 8915, 0, 0, 30433, 1590, 0, 0, 68638, 73470, 0, 0, 90808, 6638072, 0, 0, 127356, 319803, 0, 0, 20130146, 559282596, 0, 0, 1507066936, 3820244957, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
          b(abs(n-i^4), i-1)+b(n+i^4, i-1))))(i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30)
        end:
    a:= n-> `if`(irem(n, 4)>1, 0, b(n, n)):
    seq(a(n), n=0..43);  # Alois P. Heinz, Jan 25 2024

Extensions

a(46)-a(59) from Alois P. Heinz, Jan 25 2024

A368348 a(n) = [x^(n^4)] Product_{k=1..n} (x^(k^4) + 1/x^(k^4)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 19, 26, 0, 0, 40, 129, 0, 0, 616, 785, 0, 0, 4080, 9309, 0, 0, 44775, 72659, 0, 0, 430297, 781505, 0, 0, 3934457, 7765047, 0, 0, 44740433, 78818429, 0, 0, 463089552, 900950811, 0, 0, 5344766190, 9806206864, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2024

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; (m-> `if`(n>m, 0, `if`(n=m, 1,
          b(abs(n-i^4), i-1)+b(n+i^4, i-1))))(i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30)
        end:
    a:= n-> `if`(irem(n, 4)>1, 0, b(n^4, n)):
    seq(a(n), n=0..43);  # Alois P. Heinz, Jan 25 2024
  • Mathematica
    b[n_, i_] := b[n, i] = Function[m, If[n > m, 0, If[n == m, 1, b[Abs[n-i^4], i-1] + b[n+i^4, i-1]]]][i*(i+1)*(2*i+1)*(3*i^2+3*i-1)/30];
    a[n_] := If[Mod[n, 4] > 1, 0, b[n^4, n]];
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Feb 14 2025, after Alois P. Heinz *)

Extensions

a(46)-a(59) from Alois P. Heinz, Jan 25 2024
Showing 1-5 of 5 results.