A111279 Number of permutations avoiding the patterns {3241,3421,4321}; number of weak sorting class based on 3241.
1, 1, 2, 6, 21, 79, 309, 1237, 5026, 20626, 85242, 354080, 1476368, 6173634, 25873744, 108628550, 456710589, 1922354351, 8098984433, 34147706833, 144068881455, 608151037123, 2568318694867, 10850577045131, 45856273670841, 193850277807569, 819669810565949
Offset: 0
Keywords
Examples
a(4) = 21 since the top row terms of M^3 = (11, 6, 3, 1, 0, 0, 0, ...)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms n=1..300 from Vincenzo Librandi)
- M. Albert, R. Aldred, M. Atkinson, C. Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb. 12 (2005) R31.
- David Callan, A bijection for two sequences in OEIS, arXiv:1602.08347 [math.CO], 2016.
- David Callan, and Toufik Mansour, Five subsets of permutations enumerated as weak sorting permutations, arXiv:1602.05182 [math.CO], 2016.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao, and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
Programs
-
Mathematica
Rest[ CoefficientList[ Series[(3 - 13x + 2x^2 + (5x - 1)*Sqrt[1 - 4x])/(2*(1 - 4x - x^2)), {x, 0, 24}], x]] (* Robert G. Wilson v, Nov 04 2005 *)
Formula
O.g.f.: (3-13*x+2*x^2+(5*x-1)*sqrt(1-4*x))/(2*(1-4*x-x^2)).
From Gary W. Adamson, Nov 14 2011: (Start)
a(n) is the sum of top row terms of M^(n-1), M is an infinite square production matrix with powers of 2 as the left border as follows:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
4, 1, 1, 1, 0, ...
8, 1, 1, 1, 1, ...
... (End)
The top rows of these matrix powers, 1; 1,1; 3,2,1; 11,6,3,1; 43,21,10,4,1; appear also as columns in A026736. - R. J. Mathar, Nov 15 2011
D-finite with recurrence n*a(n) + (16-13*n)*a(n-1)+(55*n-134)*a(n-2) + (264-71*n)*a(n-3) + 10*(7-2*n)*a(n-4) = 0. - R. J. Mathar, Nov 15 2011
Shorter recurrence: n*(n+5)*a(n) = 2*(4*n^2 + 17*n - 30)*a(n-1) - 3*(5*n^2 + 17*n - 80)*a(n-2) - 2*(n+6)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ (5/2-11/10*sqrt(5))*(sqrt(5)+2)^n. - Vaclav Kotesovec, Oct 18 2012
Extensions
More terms from Robert G. Wilson v, Nov 04 2005
a(0)=1 prepended by Alois P. Heinz, Dec 11 2020
Comments