A111282 Number of permutations avoiding the patterns {1432,2431,3412,3421,4132,4231,4312,4321}; number of strong sorting class based on 1432.
1, 2, 6, 16, 42, 110, 288, 754, 1974, 5168, 13530, 35422, 92736, 242786, 635622, 1664080, 4356618, 11405774, 29860704, 78176338, 204668310, 535828592, 1402817466, 3672623806, 9615053952, 25172538050, 65902560198, 172535142544
Offset: 1
Examples
x + 2*x^2 + 6*x^3 + 16*x^4 + 42*x^5 + 110*x^6 + 288*x^7 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- M. Albert, R. Aldred, M. Atkinson, C. Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb. 12 (2005) #R31.
- Michael D. Barrus, Weakly threshold graphs, arXiv preprint arXiv:1608.01358 [math.CO], 2016.
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Index entries for linear recurrences with constant coefficients, signature (3, -1).
Programs
-
Haskell
a111282 n = a111282_list !! (n-1) a111282_list = 1 : a025169_list -- Reinhard Zumkeller, Apr 08 2012
-
Mathematica
a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 3a[n - 1] - a[n - 2]; Table[a[n], {n, 28}] (* Robert G. Wilson v *)
Formula
a(n) = 3a(n-1) - a(n-2), n > 3.
a(n) = A025169(n-2), n > 1. - R. J. Mathar, Aug 18 2008
From Paul Barry, Oct 13 2009: (Start)
G.f.: (1 - x + x^2)/(1 - 3x + x^2).
a(n) = F(2n+1) + F(2n-2) + 0^n. (End)
Comments